Search Results

Now showing 1 - 10 of 13
Loading...
Thumbnail Image
Item

Improving the modulation bandwidth in semiconductor lasers by passive feedback

2006, Radziunas, Mindaugas, Glitzky, Annegret, Bandelow, Uwe, Wolfrum, Matthias, Troppenz, Ute, Kreissl, Jochen, Rehbein, Wolfgang

We explore the concept of passive-feedback lasers for direct signal modulation at 40 Gbit/s. Based on numerical simulation and bifurcation analysis, we explain the main mechanisms in these devices which are crucial for modulation at high speed. The predicted effects are demonstrated experimentally by means of correspondingly designed devices. In particular a significant improvement of the modulation bandwidth at low injection currents can be demonstrated.

Loading...
Thumbnail Image
Item

Compression limit by third-order dispersion in the normal dispersion regime

2006, Demircan, Ayhan, Kroh, Marcel, Bandelow, Uwe, Hüttl, Bernd, Weber, Hans-Georg

Broad-band continua at gigahertz rates generated in high-nonlinear dispersion flattened fibers in the normal dispersion regime near the zero-dispersion wavelength can be used for a subsequent efficient pulse compression, leading to stable high-repetition-rate trains of femtosecond pulses. We show experimentally and theoretically that third-order dispersion defines a critical power, where beyond further compression is inhibited. This fundamental limit is caused by a pulse-breakup.

Loading...
Thumbnail Image
Item

A model for mode-locking in quantum dot lasers

2006, Viktorov, Evgeny, Mandel, Paul, Vladimirov, Andrei, Bandelow, Uwe

We propose a model for passive mode-locking in quantum dot laser and report on specific dynamical properties of the regime which is characterized by a fast gain recovery. No Q-switching instability has been found accompanying the mode-locking. Bistability can occur between the mode-locking regime and zero intensity steady state.

Loading...
Thumbnail Image
Item

Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation

2006, Demircan, Ayhan, Bandelow, Uwe

We investigate the generation mechanisms for ultrawide spectra in nonlinear optical fibers. Soliton fission and modulation instability represent fundamental mechanisms for the generation process. The primary origin of the spectral broadening changes with the pump-pulse duration. Soliton fission dominates for low input power and short pulses. Its efficiency for supercontinuum generation and especially the extend to the blue side can be increased by proper design of the dispersion profile. The modulation instability has a strong impact for high input powers and greatly enhances the generation process, but leads to a degradation of the coherence properties. Also for short pulses with durations of 60 fs the modulation instability is present and can hardly be suppressed. The interplay between these two effects leads to various characteristics of the resulting spectra, which are modified by to the relative impact of the modulation instability.

Loading...
Thumbnail Image
Item

Non-Raman redshift by pulse splitting in the normal dispersion regime

2007, Demircan, Ayhan, Kroh, Marcel, Bandelow, Uwe

While usually the generation of a Stokes component is attributed to Raman scattering, we present here experimentally and numerically a more fundamental mechanism which can be explained by the nonlinear Schrödinger equation alone. It can be employed to excite new frequency components on the red side, by using pulse splitting in the normal dispersion regime.

Loading...
Thumbnail Image
Item

Simulation of pulse propagation in nonlinear optical fibers

2003, Bandelow, Uwe, Demircan, Ayhan, Kesting, Martin

We solve numerically a generalized nonlinear Schroedinger equation by using a pseudospectral method. Integration is performed by using an eight-order Runge-Kutta scheme. The numerical method therefore differs from the commonly used split-step method. Effects such as the impact of group velocity dispersion (GVD) up to fourth-order dispersion, self phase modulation (SPM), self-steepening and intrapulse Raman scattering can be investigated with the code. Examples for the above effects are demonstrated, as well as their interplay in the context of soliton propagation and sub-picosecond pulses.

Loading...
Thumbnail Image
Item

Modeling and simulation of strained quantum wells in semiconductorlasers

2000, Bandelow, Uwe, Kaiser, Hans-Christoph, Koprucki, Thomas, Rehberg, Joachim

A model allowing for efficiently obtaining band structure information on semiconductor Quantum Well structures will be demonstrated which is based on matrix-valued kp-Schrödinger operators. Effects such as confinement, band mixing, spin-orbit interaction and strain can be treated consistently. The impact of prominent Coulomb effects can be calculated by including the Hartree interaction via the Poisson equation and the bandgap renormalization via exchange-correlation potentials, resulting in generalized (matrix-valued) Schrödinger-Poisson systems. Band structure information enters via densities and the optical response function into comprehensive simulations of Multi Quantum Well lasers. These device simulations yield valuable information on device characteristics, including effects of carrier transport, waveguiding and heating and can be used for optimization.

Loading...
Thumbnail Image
Item

Padé approximant for refractive index and nonlocal envelope equations

2009, Amiranashvili, Shalva, Mielke, Alexander, Bandelow, Uwe

Padé approximant is superior to Taylor expansion when functions contain poles. This is especially important for response functions in complex frequency domain, where singularities are present and intimately related to resonances and absorption. Therefore we introduce a diagonal Padé approximant for the complex refractive index and apply it to the description of short optical pulses. This yields a new nonlocal envelope equation for pulse propagation. The model offers a global representation of arbitrary medium dispersion and absorption, e.g., the fulfillment of the Kramers-Kronig relation can be established. In practice, the model yields an adequate description of spectrally broad pulses for which the polynomial dispersion operator diverges and can induce huge errors.

Loading...
Thumbnail Image
Item

Limit for pulse compression by pulse splitting

2006, Demircan, Ayhan, Bandelow, Uwe

We have detected a fundamental pulse-compression limit for high-nonlinear fibers in the normal dispersion regime near the zero-dispersion wavelength. The desired generation of a broadband continuum by self-phase modulation is limited by already small amounts of third-order dispersion, which results in pulse splitting above a critical pulse power. We investigate the critical fiber length in dependence on pulse- and fiber parameters.

Loading...
Thumbnail Image
Item

On the propagation of vector ultra-short pulses

2006, Pietrzyk, Monika, Kanattsikov, I., Bandelow, Uwe

A two component vector generalization of the Schäfer-Wayne short pulse equation which describes propagation of ultra-short pulses in optical fibers with Kerr nonlinearity beyond the slowly varying envelope approximation and takes into account the effects of anisotropy and polarization is presented. As a special case, the integrable two-component short pulse equations are constructed which represent the counterpart of the Manakov system in the case of ultra-short pulses.