Search Results

Now showing 1 - 3 of 3
  • Item
    Asymptotically stable compensation of soliton self-frequency shift
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Pickartz, Sabrina; Bandelow, Uwe; Amiranashvili, Shalva
    We report the cancellation of the soliton self-frequency shift in nonlinear optical fibers. A soliton which interacts with a group velocity matched low intensity dispersive pump pulse, experiences a continuous blue-shift in frequency, which counteracts the soliton selffrequency shift due to Raman scattering. The soliton self-frequency shift can be fully compensated by a suitably prepared dispersive wave. We quantify this kind of soliton-dispersive wave interaction by an adiabatic approach and demonstrate that the compensation is stable in agreement with numerical simulations.
  • Item
    Efficient all-optical control of solitons
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Pickartz, Sabrina; Bandelow, Uwe; Amiranashvili, Shalva
    We consider the phenomenon of an optical soliton controlled (e.g. amplified) by a much weaker second pulse which is efficiently scattered at the soliton. An important problem in this context is to quantify the small range of parameters at which the interaction takes place. This has been achieved by using adiabatic ODEs for the soliton characteristics, which is much faster than an empirical scan of the full propagation equations for all parameters in question.
  • Item
    Adiabatic theory of champion solitons
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Pickartz, Sabrina; Bandelow, Uwe; Amiranashvili, Shalva
    We consider scattering of small-amplitude dispersive waves at an intense optical soliton which constitutes a nonlinear perturbation of the refractive index. Specifically, we consider a single-mode optical fiber and a group velocity matched pair: an optical soliton and a nearly perfectly reflected dispersive wave, a fiber-optical analogue of the event horizon. By combining (i) an adiabatic approach that is used in soliton perturbation theory and (ii) scattering theory from Quantum Mechanics, we give a quantitative account for the evolution of all soliton parameters. In particular, we quantify the increase in the soliton peak power that may result in spontaneous appearance of an extremely large, so-called champion soliton. The presented adiabatic theory agrees well with the numerical solutions of the pulse propagation equation. Moreover, for the first time we predict the full frequency band of the scattered dispersive waves and explain an emerging caustic structure in the space-time domain.