Search Results

Now showing 1 - 3 of 3
  • Item
    Simulation of pulse propagation in nonlinear optical fibers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2003) Bandelow, Uwe; Demircan, Ayhan; Kesting, Martin
    We solve numerically a generalized nonlinear Schroedinger equation by using a pseudospectral method. Integration is performed by using an eight-order Runge-Kutta scheme. The numerical method therefore differs from the commonly used split-step method. Effects such as the impact of group velocity dispersion (GVD) up to fourth-order dispersion, self phase modulation (SPM), self-steepening and intrapulse Raman scattering can be investigated with the code. Examples for the above effects are demonstrated, as well as their interplay in the context of soliton propagation and sub-picosecond pulses.
  • Item
    Stabilization of optical pulse transmission by exploiting fiber nonlinearities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Bandelow, Uwe; Amiranashvili, Shalva; Pickartz, Sabrina
    We prove theoretically, that the evolution of optical solitons can be dramatically influenced in the course of nonlinear interaction with much smaller group velocity matched pulses. Even weak pump pulses can be used to control the solitons, e.g., to compensate their degradation caused by Raman-scattering.
  • Item
    Asymptotically stable compensation of soliton self-frequency shift
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Pickartz, Sabrina; Bandelow, Uwe; Amiranashvili, Shalva
    We report the cancellation of the soliton self-frequency shift in nonlinear optical fibers. A soliton which interacts with a group velocity matched low intensity dispersive pump pulse, experiences a continuous blue-shift in frequency, which counteracts the soliton selffrequency shift due to Raman scattering. The soliton self-frequency shift can be fully compensated by a suitably prepared dispersive wave. We quantify this kind of soliton-dispersive wave interaction by an adiabatic approach and demonstrate that the compensation is stable in agreement with numerical simulations.