Search Results

Now showing 1 - 2 of 2
  • Item
    Case studies of the wind field around Ny-Ålesund, Svalbard, using unmanned aircraft
    (London : Taylor & Francis, 2022) Schön, Martin; Suomi, Irene; Altstädter, Barbara; van Kesteren, Bram; zum Berge, Kjell; Platis, Andreas; Wehner, Birgit; Lampert, Astrid; Bange, Jens
    The wind field in Arctic fjords is strongly influenced by glaciers, local orography and the interaction between sea and land. Ny-Ålesund, an important location for atmospheric research in the Arctic, is located in Kongsfjorden, a fjord with a complex local wind field that influences measurements in Ny-Ålesund. Using wind measurements from UAS (unmanned aircraft systems), ground measurements, radiosonde and reanalysis data, characteristic processes that determine the wind field around Ny-Ålesund are identified and analysed. UAS measurements and ground measurements show, as did previous studies, a south-east flow along Kongsfjorden, dominating the wind conditions in Ny-Ålesund. The wind measured by the UAS in a valley 1 km west of Ny-Ålesund differs from the wind measured at the ground in Ny-Ålesund. In this valley, we identify a small-scale catabatic flow from the south to south-west as the cause for this difference. Case studies show a backing (counterclockwise rotation with increasing altitude) of the wind direction close to the ground. A katabatic flow is measured near the ground, with a horizontal wind speed up to 5 m s-1. Both the larger-scale south-east flow along the fjord and the local katabatic flows lead to a highly variable wind field, so ground measurements and weather models alone give an incomplete picture. The comparison of UAS measurements, ground measurements and weather conditions analysis using a synoptic model is used to show that the effects measured in the case studies play a role in the Ny-Ålesund wind field in spring.
  • Item
    Overview: Integrative and Comprehensive Understanding on Polar Environments (iCUPE) – concept and initial results
    (Katlenburg-Lindau : EGU, 2020) Petäjä, Tuukka; Duplissy, Ella-Maria; Tabakova, Ksenia; Schmale, Julia; Altstädter, Barbara; Ancellet, Gerard; Arshinov, Mikhail; Balin, Yurii; Baltensperger, Urs; Bange, Jens; Beamish, Alison; Belan, Boris; Berchet, Antoine; Bossi, Rossana; Cairns, Warren R.L.; Ebinghaus, Ralf; El Haddad, Imad; Ferreira-Araujo, Beatriz; Franck, Anna; Huang, Lin; Hyvärinen, Antti; Humbert, Angelika; Kalogridis, Athina-Cerise; Konstantinov, Pavel; Lampert, Astrid; MacLeod, Matthew; Magand, Olivier; Mahura, Alexander; Marelle, Louis; Masloboev, Vladimir; Moisseev, Dmitri; Moschos, Vaios; Neckel, Niklas; Onishi, Tatsuo; Osterwalder, Stefan; Ovaska, Aino; Paasonen, Pauli; Panchenko, Mikhail; Pankratov, Fidel; Pernov, Jakob B.; Platis, Andreas; Popovicheva, Olga; Raut, Jean-Christophe; Riandet, Aurélie; Sachs, Torsten; Salvatori, Rosamaria; Salzano, Roberto; Schröder, Ludwig; Schön, Martin; Shevchenko, Vladimir; Skov, Henrik; Sonke, Jeroen E.; Spolaor, Andrea; Stathopoulos, Vasileios K.; Strahlendorff, Mikko; Thomas, Jennie L.; Vitale, Vito; Vratolis, Sterios; Barbante, Carlo; Chabrillat, Sabine; Dommergue, Aurélien; Eleftheriadis, Konstantinos; Heilimo, Jyri; Law, Kathy S.; Massling, Andreas; Noe, Steffen M.; Paris, Jean-Daniel; Prévôt, André S.H.; Riipinen, Ilona; Wehner, Birgit; Xie, Zhiyong; Lappalainen, Hanna K.
    The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. We set up the ERA-PLANET Strand 4 project “iCUPE – integrative and Comprehensive Understanding on Polar Environments” to provide novel insights and observational data on global grand challenges with an Arctic focus. We utilize an integrated approach combining in situ observations, satellite remote sensing Earth observations (EOs), and multi-scale modeling to synthesize data from comprehensive long-term measurements, intensive campaigns, and satellites to deliver data products, metrics, and indicators to stakeholders concerning the environmental status, availability, and extraction of natural resources in the polar areas. The iCUPE work consists of thematic state-of-the-art research and the provision of novel data in atmospheric pollution, local sources and transboundary transport, the characterization of arctic surfaces and their changes, an assessment of the concentrations and impacts of heavy metals and persistent organic pollutants and their cycling, the quantification of emissions from natural resource extraction, and the validation and optimization of satellite Earth observation (EO) data streams. In this paper we introduce the iCUPE project and summarize initial results arising out of the integration of comprehensive in situ observations, satellite remote sensing, and multi-scale modeling in the Arctic context.