Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Sustainable use of renewable resources in a stylized social–ecological network model under heterogeneous resource distribution

2017, Barfuss, Wolfram, Donges, Jonathan F., Wiedermann, Marc, Lucht, Wolfgang

Human societies depend on the resources ecosystems provide. Particularly since the last century, human activities have transformed the relationship between nature and society at a global scale. We study this coevolutionary relationship by utilizing a stylized model of private resource use and social learning on an adaptive network. The latter process is based on two social key dynamics beyond economic paradigms: boundedly rational imitation of resource use strategies and homophily in the formation of social network ties. The private and logistically growing resources are harvested with either a sustainable (small) or non-sustainable (large) effort. We show that these social processes can have a profound influence on the environmental state, such as determining whether the private renewable resources collapse from overuse or not. Additionally, we demonstrate that heterogeneously distributed regional resource capacities shift the critical social parameters where this resource extraction system collapses. We make these points to argue that, in more advanced coevolutionary models of the planetary social–ecological system, such socio-cultural phenomena as well as regional resource heterogeneities should receive attention in addition to the processes represented in established Earth system and integrated assessment models

Loading...
Thumbnail Image
Item

Earth system modeling with endogenous and dynamic human societies: the copan:CORE open World–Earth modeling framework

2020, Donges, Jonathan F., Heitzig, Jobst, Barfuss, Wolfram, Wiedermann, Marc, Kassel, Johannes A., Kittel, Tim, Kolb, Jakob J., Kolster, Till, Müller-Hansen, Finn, Otto, Ilona M., Zimmerer, Kilian B., Lucht, Wolfgang

Analysis of Earth system dynamics in the Anthropocene requires explicitly taking into account the increasing magnitude of processes operating in human societies, their cultures, economies and technosphere and their growing feedback entanglement with those in the physical, chemical and biological systems of the planet. However, current state-of-the-art Earth system models do not represent dynamic human societies and their feedback interactions with the biogeophysical Earth system and macroeconomic integrated assessment models typically do so only with limited scope. This paper (i) proposes design principles for constructing world-Earth models (WEMs) for Earth system analysis of the Anthropocene, i.e., models of social (world)-ecological (Earth) coevolution on up to planetary scales, and (ii) presents the copan:CORE open simulation modeling framework for developing, composing and analyzing such WEMs based on the proposed principles. The framework provides a modular structure to flexibly construct and study WEMs. These can contain biophysical (e.g., carbon cycle dynamics), socio-metabolic or economic (e.g., economic growth or energy system changes), and sociocultural processes (e.g., voting on climate policies or changing social norms) and their feedback interactions, and they are based on elementary entity types, e.g., grid cells and social systems. Thereby, copan:CORE enables the epistemic flexibility needed for contributions towards Earth system analysis of the Anthropocene given the large diversity of competing theories and methodologies used for describing socio-metabolic or economic and sociocultural processes in the Earth system by various fields and schools of thought. To illustrate the capabilities of the framework, we present an exemplary and highly stylized WEM implemented in copan:CORE that illustrates how endogenizing sociocultural processes and feedbacks such as voting on climate policies based on socially learned environmental awareness could fundamentally change macroscopic model outcomes. © Author(s) 2020.

Loading...
Thumbnail Image
Item

Stewardship of global collective behavior

2021, Bak-Coleman, Joseph B., Alfano, Mark, Barfuss, Wolfram, Bergstrom, Carl T., Centeno, Miguel A., Couzin, Iain D., Donges, Jonathan F., Galesic, Mirta, Gersick, Andrew S., Jacquet, Jennifer, Kao, Albert B., Moran, Rachel E., Romanczuk, Pawel, Rubenstein, Daniel I., Tombak, Kaia J., Van Bavel, Jay J., Weber, Elke U.

Collective behavior provides a framework for understanding how the actions and properties of groups emerge from the way individuals generate and share information. In humans, information flows were initially shaped by natural selection yet are increasingly structured by emerging communication technologies. Our larger, more complex social networks now transfer high-fidelity information over vast distances at low cost. The digital age and the rise of social media have accelerated changes to our social systems, with poorly understood functional consequences. This gap in our knowledge represents a principal challenge to scientific progress, democracy, and actions to address global crises. We argue that the study of collective behavior must rise to a “crisis discipline” just as medicine, conservation, and climate science have, with a focus on providing actionable insight to policymakers and regulators for the stewardship of social systems.

Loading...
Thumbnail Image
Item

From math to metaphors and back again: Social-ecological resilience from a multi-agent-environment perspective

2017, Donges, Jonathan F., Barfuss, Wolfram

Science and policy stand to benefit from reconnecting the many notions of social-ecological resilience to their roots in complexity sciences.We propose several ways of moving towards operationalization through the classification of modern concepts of resilience based on a multi-agent-environment perspective. Social-ecological resilience underlies popular sustainability concepts that have been influential in formulating the United Nations Sustainable Development Goals (SDGs), such as the Planetary Boundaries and Doughnut Economics. Scientific investigation of these concepts is supported by mathematical models of planetary biophysical and societal dynamics, both of which call for operational measures of resilience. However, current quantitative descriptions tend to be restricted to the foundational form of the concept: persistence resilience. We propose a classification of modern notions of social-ecological resilience from a multi-agent-environment perspective. This aims at operationalization in a complex systems framework, including the persistence, adaptation and transformation aspects of resilience, normativity related to desirable system function, first- vs. second-order and specific vs. general resilience. For example, we discuss the use of the Topology of Sustainable Management Framework. Developing the mathematics of resilience along these lines would not only make social-ecological resilience more applicable to data and models, but could also conceptually advance resilience thinking.