Search Results

Now showing 1 - 2 of 2
  • Item
    Multimode Fabry-Perot Interferometer Probe based on Vernier Effect for Enhanced Temperature Sensing
    (Basel : MDPI, 2019) Gomes, André D.; Becker, Martin; Dellith, Jan; Zibaii, Mohammad Ismail; Latifi, Hamid; Rothhardt, Manfred; Bartelt, Hartmut; Frazão, Orlando
    New miniaturized sensors for biological and medical applications must be adapted to the measuring environments and they should provide a high measurement resolution to sense small changes. The Vernier effect is an effective way of magnifying the sensitivity of a device, allowing for higher resolution sensing. We applied this concept to the development of a small-size optical fiber Fabry–Perot interferometer probe that presents more than 60-fold higher sensitivity to temperature than the normal Fabry–Perot interferometer without the Vernier effect. This enables the sensor to reach higher temperature resolutions. The silica Fabry–Perot interferometer is created by focused ion beam milling of the end of a tapered multimode fiber. Multiple Fabry–Perot interferometers with shifted frequencies are generated in the cavity due to the presence of multiple modes. The reflection spectrum shows two main components in the Fast Fourier transform that give rise to the Vernier effect. The superposition of these components presents an enhancement of sensitivity to temperature. The same effect is also obtained by monitoring the reflection spectrum node without any filtering. A temperature sensitivity of −654 pm/°C was obtained between 30 °C and 120 °C, with an experimental resolution of 0.14 °C. Stability measurements are also reported.
  • Item
    Giant refractometric sensitivity by combining extreme optical Vernier effect and modal interference
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Gomes, André D.; Kobelke, Jens; Bierlich, Jörg; Dellith, Jan; Rothhardt, Manfred; Bartelt, Hartmut; Frazão, Orlando
    The optical Vernier effect consists of overlapping responses of a sensing and a reference interferometer with slightly shifted interferometric frequencies. The beating modulation thus generated presents high magnified sensitivity and resolution compared to the sensing interferometer, if the two interferometers are slightly out of tune with each other. However, the outcome of such a condition is a large beating modulation, immeasurable by conventional detection systems due to practical limitations of the usable spectral range. We propose a method to surpass this limitation by using a few-mode sensing interferometer instead of a single-mode one. The overlap response of the different modes produces a measurable envelope, whilst preserving an extremely high magnification factor, an order of magnification higher than current state-of-the-art performances. Furthermore, we demonstrate the application of that method in the development of a giant sensitivity fibre refractometer with a sensitivity of around 500 µm/RIU (refractive index unit) and with a magnification factor over 850.