Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Reactive ion beam figuring of optical aluminium surfaces

2017, Bauer, Jens, Frost, Frank, Arnold, Thomas

Ultra-smooth and arbitrarily shaped reflective optics are necessary for further progress in EUV/XUV lithography, x-ray and synchrotron technology. As one of the most important technological mirror optic materials, aluminium behaves in a rather difficult way in ultra-precision machining with such standard techniques as diamond-turning and subsequent ion beam figuring (IBF). In particular, in the latter, a strong surface roughening is obtained. Hence, up to now it has not been possible to attain the surface qualities required for UV or just visible spectral range applications. To overcome the limitations mainly caused by the aluminium alloy structural and compositional conditions, a reactive ion beam machining process using oxygen process gas is evaluated. To clarify the principle differences in the effect of oxygen gas contrary to oxygen ions on aluminium surface machining, we firstly focus on chemical-assisted ion beam etching (CAIBE) and reactive ion beam etching (RIBE) experiments in a phenomenological manner. Then, the optimum process route will be explored within a more quantitative analysis applying the concept of power spectral density (PSD) for a sophisticated treatment of the surface topography. Eventually, the surface composition is examined by means of dynamic secondary ion mass spectrometry (SIMS) suggesting a characteristic model scheme for the chemical modification of the aluminium surface during oxygen ion beam machining. Monte Carlo simulations were applied to achieve a more detailed process conception.

Loading...
Thumbnail Image
Item

Ash transformation mechanism during combustion of rice husk and rice straw

2022, Beidaghy Dizaji, Hossein, Zeng, Thomas, Hölzig, Hieronymus, Bauer, Jens, Klöß, Gert, Enke, Dirk

Biomass is an alternative energy resource to fossil fuels because of its potential to reduce greenhouse gas emissions. However, ash-related problems are serious obstacles for this development, especially for the use in combustion plants. Thus, design and operation of biomass boilers require detailed understanding of ash transformation reactions during thermochemical conversion. To evaluate ash transformation in silica-rich biomass fuels, rice husk and rice straw were selected because of their abundance, limited utilization conflicts with the food sector, as well as their potential in both energy and material applications. This paper reveals ash transformation mechanisms relevant for the ash melting behaviour of silica-rich biomass fuels considering chemical and phase composition of the ashes. In this regard, several advanced spectroscopic methods and diffractometry were employed to characterize the materials. The ash transformation reactions and the viscosity were simulated using thermodynamic equilibrium calculations and a slag viscosity modeling toolbox. The results illustrate the impact of impurities on the atomic structure of the silica resulting in an altered ash melting behaviour and viscosity of the silica-rich ashes. Chemical water washing, acid leaching, and blending of rice straw with rice husk strongly influenced the chemical composition of the ashes and improved ash melting behaviour. The analysis also revealed the correlation between the crystalline fraction and the porosity in silica-rich biomass ashes, as well as a crystallinity threshold. These findings are highly relevant for future investigations in boiler designs and production of biogenic silica for material applications.

Loading...
Thumbnail Image
Item

Improved ion beam tools for ultraprecision figure correction of curved aluminum mirror surfaces

2018, Bauer, Jens, Ulitschka, Melanie, Pietag, Fred, Arnold, Thomas

Aluminum mirrors offer great potential for satisfying the increasing demand in high-performance optical components for visible and ultraviolet applications. Ion beam figuring is an established finishing technology and in particular a promising technique for direct aluminum figure error correction. For the machining of strongly curved or arbitrarily shaped surfaces as well as the correction of low-to-mid spatial frequency figure errors, the usage of a high-performance ion beam source with low tool width is mandatory. For that reason, two different concepts of ion beam generation with high ion current density and narrow beam width are discussed. (1) A concave ion beam extraction grid system is used for apertureless constriction of ion beams in the low millimeter range. An oxygen ion beam with a full-width at half-maximum (FWHM) of 4.0 mm with an ion current density of 29.8  mA  /  cm2 was achieved. (2) For even smaller ion beams, a conic aperture design with a submillimeter-sized exit opening was tested. A nitrogen ion beam with an FWHM down to 0.62 mm with an ion current density of 4.6  mA  /  cm2 was obtained. In situ ion current density mapping is performed by scanning Faraday probe measurements. Special interest is set on the data evaluation for submillimeter ion beam analysis.

Loading...
Thumbnail Image
Item

BMBF-Verbundprojekt: Si- und SiGe-Dünnfilme für thermoelektrische Anwendungen, Teilvorhaben "Glancing Angle Deposition von Si-Ge-Nanosäulen" : Abschlussbericht ; Bewilligungszeitraum: 01.07.2009 - 30.06.2012

2013, Rauschenbach, Bernd, Bauer, Jens, Manova, Darina, Grüner, Christoph

[no abstract available]

Loading...
Thumbnail Image
Item

Finishing of metal optics by ion beam technologies

2019, Bauer, Jens, Frost, Frank, Lehmann, Antje, Ulitschka, Melanie, Li, Yaguo, Arnold, Thomas

Ultraprecise mirror devices show considerable potential with view to applications in the visible and the ultraviolet spectral ranges. Aluminum alloys gather good mechanical and excellent optical properties and thus they emerge as important mirror construction materials. However, ultraprecision machining and polishing of optical aluminum surfaces are challenging, which originates from the high chemical reactivity and the heterogeneous matrix structure. Recently, several ion beam-based techniques have been developed to qualify aluminum mirrors for short-wavelength applications. We give an overview of the state-of-the-art ion beamprocessing techniques for figure error correction and planarization, either by direct aluminum machining or with the aid of polymer or inorganic, amorphous surface films. © The Authors.

Loading...
Thumbnail Image
Item

Orientation‐dependent nanostructuring of titanium surfaces by low‐energy ion beam erosion

2020, Bauer, Jens, Frost, Frank

Regular nanoscopic ripple and dot patterns are fabricated on poly-crystalline titanium samples by irradiation with 1.5 keV argon ions at normal incidence. The morphology of the nanostructures is investigated by scanning electron microscopy and scanning force microscopy. The ripple structures exhibit a saw-tooth cross-section profile. Electron backscatter diffraction experiments are performed to analyze the local grain structure. The study suggests a distinct correlation of the nanostructure morphology to the crystallographic orientation of the titanium surface.