Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Bio-energy and CO2 emission reductions: an integrated land-use and energy sector perspective

2020, Bauer, Nico, Klein, David, Humpenöder, Florian, Kriegler, Elmar, Luderer, Gunnar, Popp, Alexander, Strefler, Jessica

Biomass feedstocks can be used to substitute fossil fuels and effectively remove carbon from the atmosphere to offset residual CO2 emissions from fossil fuel combustion and other sectors. Both features make biomass valuable for climate change mitigation; therefore, CO2 emission mitigation leads to complex and dynamic interactions between the energy and the land-use sector via emission pricing policies and bioenergy markets. Projected bioenergy deployment depends on climate target stringency as well as assumptions about context variables such as technology development, energy and land markets as well as policies. This study investigates the intra- and intersectorial effects on physical quantities and prices by coupling models of the energy (REMIND) and land-use sector (MAgPIE) using an iterative soft-link approach. The model framework is used to investigate variations of a broad set of context variables, including the harmonized variations on bioenergy technologies of the 33rd model comparison study of the Stanford Energy Modeling Forum (EMF-33) on climate change mitigation and large scale bioenergy deployment. Results indicate that CO2 emission mitigation triggers strong decline of fossil fuel use and rapid growth of bioenergy deployment around midcentury (~ 150 EJ/year) reaching saturation towards end-of-century. Varying context variables leads to diverse changes on mid-century bioenergy markets and carbon pricing. For example, reducing the ability to exploit the carbon value of bioenergy increases bioenergy use to substitute fossil fuels, whereas limitations on bioenergy supply shift bioenergy use to conversion alternatives featuring higher carbon capture rates. Radical variations, like fully excluding all technologies that combine bioenergy use with carbon removal, lead to substantial intersectorial effects by increasing bioenergy demand and increased economic pressure on both sectors. More gradual variations like selective exclusion of advanced bioliquid technologies in the energy sector or changes in diets mostly lead to substantial intrasectorial reallocation effects. The results deepen our understanding of the land-energy nexus, and we discuss the importance of carefully choosing variations in sensitivity analyses to provide a balanced assessment. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy

2014, Kriegler, Elmar, Riahi, Keywan, Bauer, Nico, Schwanitz, Valeria Jana, Petermann, Nils, Bosetti, Valentina, Marcucci, Adriana, Otto, Sander, Paroussos, Leonidas, Rao, Shilpa, Currás, Tabaré Arroyo, Ashina, Shuichi, Bollen, Johannes, Eom, Jiyong, Hamdi-Cherif, Meriem, Longden, Thomas, Kitous, Alban, Méjean, Aurélie, Sano, Fuminori, Schaeffer, Michiel, Wada, Kenichi, Capros, Pantelis, van Vuuren, Detlef P., Edenhofer, Ottmar

This study explores a situation of staged accession to a global climate policy regime from the current situation of regionally fragmented and moderate climate action. The analysis is based on scenarios in which a front runner coalition – the EU or the EU and China – embarks on immediate ambitious climate action while the rest of the world makes a transition to a global climate regime between 2030 and 2050. We assume that the ensuing regime involves strong mitigation efforts but does not require late joiners to compensate for their initially higher emissions. Thus, climate targets are relaxed, and although staged accession can achieve significant reductions of global warming, the resulting climate outcome is unlikely to be consistent with the goal of limiting global warming to 2 degrees. The addition of China to the front runner coalition can reduce pre-2050 excess emissions by 20–30%, increasing the likelihood of staying below 2 degrees. Not accounting for potential co-benefits, the cost of front runner action is found to be lower for the EU than for China. Regions that delay their accession to the climate regime face a trade-off between reduced short term costs and higher transitional requirements due to larger carbon lock-ins and more rapidly increasing carbon prices during the accession period.