Search Results

Now showing 1 - 2 of 2
  • Item
    New particle formation in the Front Range of the Colorado Rocky Mountains
    (München : European Geopyhsical Union, 2008) Boy, M.; Karl, T.; Turnipseed, A.; Mauldin, R.L.; Kosciuch, E.; Greenberg, J.; Massling, A.; Rathbone, J.; Smith, J.; Held, A.; Barsanti, K.; Wehner, B.; Bauer, S.; Wiedensohler, A.; Bonn, B.; Kulmala, M.; Guenther, A.
    New particle formation is of interest because of its influence on the properties of aerosol population, and due to the possible contribution of newly formed particles to cloud condensation nuclei. Currently no conclusive evidence exists as to the mechanism or mechanisms of nucleation and subsequent particle growth. However, nucleation rates exhibit a clear dependence on ambient sulphuric acid concentrations and particle growth is often attributed to the condensation of organic vapours. A detailed study of new particle formation in the Front Range of the Colorado Rocky Mountains is presented here. Gas and particle measurement data for 32 days was analyzed to identify event days, possible event days, and non-event days. A detailed analysis of nucleation and growth is provided for four days on which new particle formation was clearly observed. Evidence for the role of sesquiterpenes in new particle formation is presented.
  • Item
    Airborne spectral radiation measurements to derive solar radiative forcing of Saharan dust mixed with biomass burning smoke particles
    (Milton Park : Taylor & Francis, 2017) Bauer, S.; Bierwirth, E.; Esselborn, M.; Petzold, A.; Macke, A.; Trautmann, T.; Wendisch, M.
    Airborne measurements of upward solar spectral irradiances were performed during the second Saharan Mineral dUst experiMent (SAMUM-2) campaign based on the Cape Verde Islands. Additionally, airborne high resolution lidar measurements of vertical profiles of particle extinction coefficients were collected in parallel to the radiation data. Aerosol layers of Saharan dust, partly mixed with biomass-burning smoke, were probed. With corresponding radiative transfer simulations the single scattering albedo and the asymmetry parameter of the aerosol particles were derived although with high uncertainty. The broad-band aerosol solar radiative forcing at the top of atmosphere was calculated and examined as a function of the aerosol types. However, due to uncertainties in both the measurements and the calculations the chemical composition cannot be identified. In addition, a mostly measurement-based method to derive the broad-band aerosol solar radiative forcing was used. This approach revealed clear differences of broad-band net irradiances as a function of the aerosol optical depth. The data were used to identify different aerosol types from different origins. Higher portions of biomass-burning smoke lead to larger broad-band net irradiances.