Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Simultaneous observations of a Mesospheric Inversion Layer and turbulence during the ECOMA-2010 rocket campaign

2013, Szewczyk, A., Strelnikov, B., Rapp, M., Strelnikova, I., Baumgarten, G., Kaifler, N., Dunker, T., Hoppe, U.-P.

From 19 November to 19 December 2010 the fourth and final ECOMA rocket campaign was conducted at Andøya Rocket Range (69 N, 16 E) in northern Norway. We present and discuss measurement results obtained during the last rocket launch labelled ECOMA09 when simultaneous and true common volume in situ measurements of temperature and turbulence supported by ground-based lidar observations reveal two Mesospheric Inversion Layers (MIL) at heights between 71 and 73 km and between 86 and 89 km. Strong turbulence was measured in the region of the upper inversion layer, with the turbulent energy dissipation rates maximising at 2 W kg-1. This upper MIL was observed by the ALOMAR Weber Na lidar over the period of several hours. The spatial extension of this MIL as observed by the MLS instrument onboard AURA satellite was found to be more than two thousand kilometres. Our analysis suggests that both observed MILs could possibly have been produced by neutral air turbulence.

Loading...
Thumbnail Image
Item

Coincident measurements of PMSE and NLC above ALOMAR (69° N, 16° E) by radar and lidar from 1999-2008

2011, Kaifler, N., Baumgarten, G., Fiedler, J., Latteck, R., Lübken, F.-J., Rapp, M.

Polar Mesosphere Summer Echoes (PMSE) and Noctilucent Clouds (NLC) have been routinely measured at the ALOMAR research facility in Northern Norway (69° N, 16° E) by lidar and radar, respectively. 2900 h of lidar measurements by the ALOMAR Rayleigh/Mie/Raman lidar were combined with almost 18 000 h of radar measurements by the ALWIN VHF radar, all taken during the years 1999 to 2008, to study simultaneous and common-volume observations of both phenomena. PMSE and NLC are known from both theory and observations to be positively linked. We quantify the occurrences of PMSE and/or NLC and relations in altitude, especially with respect to the lower layer boundaries. The PMSE occurrence rate is with 75.3% considerably higher than the NLC occurrence rate of 19.5%. For overlapping PMSE and NLC observations, we confirm the coincidence of the lower boundaries and find a standard deviation of 1.26 km, hinting at very fast sublimation rates. However, 10.1% of all NLC measurements occur without accompanying PMSE. Comparison of occurrence rates with solar zenith angle reveals that NLC without PMSE mostly occur around midnight indicating that the ice particles were not detected by the radar due to the reduced electron density.

Loading...
Thumbnail Image
Item

NLC and the background atmosphere above ALOMAR

2011, Fiedler, J., Baumgarten, G., Berger, U., Hoffmann, P., Kaifler, N., Lübken, F.-J.

Noctilucent clouds (NLC) have been measured by the Rayleigh/Mie/Raman-lidar at the ALOMAR research facility in Northern Norway (69° N, 16° E). From 1997 to 2010 NLC were detected during more than 1850 h on 440 different days. Colocated MF-radar measurements and calculations with the Leibniz-Institute Middle Atmosphere (LIMA-) model are used to characterize the background atmosphere. Temperatures as well as horizontal winds at 83 km altitude show distinct differences during NLC observations compared to when NLC are absent. The seasonally averaged temperature is lower and the winds are stronger westward when NLC are detected. The wind separation is a robust feature as it shows up in measurements as well as in model results and it is consistent with the current understanding that lower temperatures support the existence of ice particles. For the whole 14-year data set there is no statistically significant relation between NLC occurrence and solar Lyman-α radiation. On the other hand NLC occurrence and temperatures at 83 km show a significant anti-correlation, which suggests that the thermal state plays a major role for the existence of ice particles and dominates the pure Lyman-α influence on water vapor during certain years. We find the seasonal mean NLC altitudes to be correlated to both Lyman-α radiation and temperature. NLC above ALOMAR are strongly influenced by atmospheric tides. The cloud water content varies by a factor of 2.8 over the diurnal cycle. Diurnal and semidiurnal amplitudes and phases show some pronounced year-to-year variations. In general, amplitudes as well as phases vary in a different manner. Amplitudes change by a factor of more than 3 and phases vary by up to 7 h. Such variability could impact long-term NLC observations which do not cover the full diurnal cycle.

Loading...
Thumbnail Image
Item

Quantification of waves in lidar observations of noctilucent clouds at scales from seconds to minutes

2013, Kaifler, N., Baumgarten, G., Fiedler, J.

We present small-scale structures and waves observed in noctilucent clouds (NLC) by lidar at an unprecedented temporal resolution of 30 s or less. The measurements were taken with the Rayleigh/Mie/Raman lidar at the ALOMAR observatory in northern Norway (69 N) in the years 2008-2011. We find multiple layer NLC in 7.9% of the time for a brightness threshold of δ β 12 × 10-10 m-1 sr-1. In comparison to 10 min averaged data, the 30 s dataset shows considerably more structure. For limited periods, quasi-monochromatic waves in NLC altitude variations are common, in accord with ground-based NLC imagery. For the combined dataset, on the other hand, we do not find preferred periods but rather significant periods at all timescales observed (1 min to 1 h). Typical wave amplitudes in the layer vertical displacements are 0.2 km with maximum amplitudes up to 2.3 km. Average spectral slopes of temporal altitude and brightness variations are-2.01 ± 0.25 for centroid altitude,-1.41 ± 0.24 for peak brightness and-1.73 ± 0.25 for integrated brightness. Evaluating a new single-pulse detection system, we observe altitude variations of 70 s period and spectral slopes down to a scale of 10 s. We evaluate the suitability of NLC parameters as tracers for gravity waves.

Loading...
Thumbnail Image
Item

Characteristics and sources of gravity waves observed in noctilucent cloud over Norway

2014, Demissie, T.D., Espy, P.J., Kleinknecht, N.H., Hatlen, M., Kaifler, N., Baumgarten, G.

Four years of noctilucent cloud (NLC) images from an automated digital camera in Trondheim and results from a ray-tracing model are used to extend the climatology of gravity waves to higher latitudes and to identify their sources during summertime. The climatology of the summertime gravity waves detected in NLC between 64 and 74° N is similar to that observed between 60 and 64° N by Pautet et al. (2011). The direction of propagation of gravity waves observed in the NLC north of 64° N is a continuation of the north and northeast propagation as observed in south of 64° N. However, a unique population of fast, short wavelength waves propagating towards the SW is observed in the NLC, which is consistent with transverse instabilities generated in situ by breaking gravity waves (Fritts and Alexander, 2003). The relative amplitude of the waves observed in the NLC Mie scatter have been combined with ray-tracing results to show that waves propagating from near the tropopause, rather than those resulting from secondary generation in the stratosphere or mesosphere, are more likely to be the sources of the prominent wave structures observed in the NLC. The coastal region of Norway along the latitude of 70° N is identified as the primary source region of the waves generated near the tropopause.