Search Results

Now showing 1 - 2 of 2
  • Item
    First in situ measurement of the vertical distribution of ice volume in a mesospheric ice cloud during the ECOMA/MASS rocket-campaign
    (München : European Geopyhsical Union, 2009) Rapp, M.; Strelnikova, I.; Strelnikov, B.; Latteck, R.; Baumgarten, G.; Li, Q.; Megner, L.; Gumbel, J.; Friedrich, M.; Hoppe, U.-P.; Robertson, S.
    We present in situ observations of mesospheric ice particles with a new particle detector which combines a classical Faraday cup with the active photoionization of particles and subsequent detection of photoelectrons. Our observations of charged particles and free electrons within a decaying PMSE-layer reveal that the presence of charged particles is a necessary but not sufficient condition for the presence of PMSE. That is, additional requirements like a sufficiently large electron density – which we here estimate to be on the order of ~100 cm−3 – and the presence of small scale structures (commonly assumed to be caused by turbulence) need to be satisfied. Our photoelectron measurements reveal a very strong horizontal structuring of the investigated ice layer, i.e., a very broad layer (82–88 km) seen on the upleg is replaced by a narrow layer from 84.5–86 km only 50 km apart on the downleg of the rocket flight. Importantly, the qualitative structure of these photoelectron profiles is in remarkable qualitative agreement with photometer measurements on the same rocket thus demonstrating the reliability of this new technique. We then show that the photoelectron currents are a unique function of the ice particle volume density (and hence ice mass) within an uncertainty of only 15% and we derive corresponding altitude profiles of ice volume densities. Derived values are in the range ~2–8×10−14 cm3/cm3 (corresponding to mass densities of ~20–80 ng/m3, and water vapor mixing ratios of 3–12 ppm) and are the first such estimates with the unique spatial resolution of an in situ measurement.
  • Item
    Simultaneous in situ measurements of small-scale structures in neutral, plasma, and atomic oxygen densities during the WADIS sounding rocket project
    (Göttingen : Copernicus GmbH, 2019) Strelnikov, B.; Eberhart, M.; Friedrich, M.; Hedin, J.; Khaplanov, M.; Baumgarten, G.; Williams, B.P.; Staszak, T.; Asmus, H.; Strelnikova, I.; Latteck, R.; Grygalashvyly, M.; Lübken, F.-J.; Höffner, J.; Wörl, R.; Gumbel, J.; Löhle, S.; Fasoulas, S.; Rapp, M.; Barjatya, A.; Taylor, M.J.; Pautet, P.-D.
    In this paper we present an overview of measurements conducted during the WADIS-2 rocket campaign. We investigate the effect of small-scale processes like gravity waves and turbulence on the distribution of atomic oxygen and other species in the mesosphere-lower thermosphere (MLT) region. Our analysis suggests that density fluctuations of atomic oxygen are coupled to fluctuations of other constituents, i.e., plasma and neutrals. Our measurements show that all measured quantities, including winds, densities, and temperatures, reveal signatures of both waves and turbulence. We show observations of gravity wave saturation and breakdown together with simultaneous measurements of generated turbulence. Atomic oxygen inside turbulence layers shows two different spectral behaviors, which might imply a change in its diffusion properties. © 2019 Author(s).