Search Results

Now showing 1 - 9 of 9
  • Item
    The ECOMA 2007 campaign: Rocket observations and numerical modelling of aerosol particle charging and plasma depletion in a PMSE/NLC layer
    (München : European Geopyhsical Union, 2009) Brattli, A.; Lie-Svendsen, Ø.; Svenes, K.; Hoppe, U.-P.; Strelnikova, I.; Rapp, M.; Latteck, R.; Torkar, K.; Gumbel, J.; Megner, L.; Baumgarten, G.
    The ECOMA series of rocket payloads use a set of aerosol particle, plasma, and optical instruments to study the properties of aerosol particles and their interaction with the ambient plasma environment in the polar mesopause region. In August 2007 the ECOMA-3 payload was launched into a region with Polar Mesosphere Summer Echoes (PMSE) and noctilucent clouds (NLC). An electron depletion was detected in a broad region between 83 and 88 km, coincident with enhanced density of negatively charged aerosol particles. We also find evidence for positive ion depletion in the same region. Charge neutrality requires that a population of positively charged particles smaller than 2 nm and with a density of at least 2×108 m−3 must also have been present in the layer, undetected by the instruments. A numerical model for the charging of aerosol particles and their interaction with the ambient plasma is used to analyse the results, showing that high aerosol particle densities are required in order to explain the observed ion density depletion. The model also shows that a very high photoionisation rate is required for the particles smaller than 2 nm to become positively charged, indicating that these may have a lower work function than pure water ice.
  • Item
    Simultaneous observations of a Mesospheric Inversion Layer and turbulence during the ECOMA-2010 rocket campaign
    (Göttingen : Copernicus, 2013) Szewczyk, A.; Strelnikov, B.; Rapp, M.; Strelnikova, I.; Baumgarten, G.; Kaifler, N.; Dunker, T.; Hoppe, U.-P.
    From 19 November to 19 December 2010 the fourth and final ECOMA rocket campaign was conducted at Andøya Rocket Range (69 N, 16 E) in northern Norway. We present and discuss measurement results obtained during the last rocket launch labelled ECOMA09 when simultaneous and true common volume in situ measurements of temperature and turbulence supported by ground-based lidar observations reveal two Mesospheric Inversion Layers (MIL) at heights between 71 and 73 km and between 86 and 89 km. Strong turbulence was measured in the region of the upper inversion layer, with the turbulent energy dissipation rates maximising at 2 W kg-1. This upper MIL was observed by the ALOMAR Weber Na lidar over the period of several hours. The spatial extension of this MIL as observed by the MLS instrument onboard AURA satellite was found to be more than two thousand kilometres. Our analysis suggests that both observed MILs could possibly have been produced by neutral air turbulence.
  • Item
    Gravity wave influence on NLC: Experimental results from ALOMAR, 69° N
    (München : European Geopyhsical Union, 2013) Wilms, H.; Rapp, M.; Hoffmann, P.; Fiedler, J.; Baumgarten, G.
    The influence of gravity waves on noctilucent clouds (NLC) at ALOMAR (69° N) is analysed by relating gravity wave activity to NLC occurrence from common-volume measurements. Gravity wave kinetic energies are derived from MF-radar wind data and filtered into different period ranges by wavelet transformation. From the dataset covering the years 1999–2011, a direct correlation between gravity wave kinetic energy and NLC occurrence is not found, i.e., NLC appear independently of the simultaneously measured gravity wave kinetic energy. In addition, gravity wave activity is divided into weak and strong activity as compared to a 13 yr mean. The NLC occurrence rates during strong and weak activity are calculated separately for a given wave period and compared to each other. Again, for the full dataset no dependence of NLC occurrence on relative gravity wave activity is found. However, concentrating on 12 h of NLC detections during 2008, we do find an NLC-amplification with strong long-period gravity wave occurrence. Our analysis hence confirms previous findings that in general NLC at ALOMAR are not predominantly driven by gravity waves while exceptions to this rule are at least possible.
  • Item
    Coincident measurements of PMSE and NLC above ALOMAR (69° N, 16° E) by radar and lidar from 1999-2008
    (Göttingen : Copernicus, 2011) Kaifler, N.; Baumgarten, G.; Fiedler, J.; Latteck, R.; Lübken, F.-J.; Rapp, M.
    Polar Mesosphere Summer Echoes (PMSE) and Noctilucent Clouds (NLC) have been routinely measured at the ALOMAR research facility in Northern Norway (69° N, 16° E) by lidar and radar, respectively. 2900 h of lidar measurements by the ALOMAR Rayleigh/Mie/Raman lidar were combined with almost 18 000 h of radar measurements by the ALWIN VHF radar, all taken during the years 1999 to 2008, to study simultaneous and common-volume observations of both phenomena. PMSE and NLC are known from both theory and observations to be positively linked. We quantify the occurrences of PMSE and/or NLC and relations in altitude, especially with respect to the lower layer boundaries. The PMSE occurrence rate is with 75.3% considerably higher than the NLC occurrence rate of 19.5%. For overlapping PMSE and NLC observations, we confirm the coincidence of the lower boundaries and find a standard deviation of 1.26 km, hinting at very fast sublimation rates. However, 10.1% of all NLC measurements occur without accompanying PMSE. Comparison of occurrence rates with solar zenith angle reveals that NLC without PMSE mostly occur around midnight indicating that the ice particles were not detected by the radar due to the reduced electron density.
  • Item
    On microphysical processes of noctilucent clouds (NLC): Observations and modeling of mean and width of the particle size-distribution
    (Göttingen : Copernicus, 2010) Baumgarten, G.; Fiedler, J.; Rapp, M.
    Noctilucent clouds (NLC) in the polar summer mesopause region have been observed in Norway (69° N, 16° E) between 1998 and 2009 by 3-color lidar technique. Assuming a mono-modal Gaussian size distribution we deduce mean and width of the particle sizes throughout the clouds. We observe a quasi linear relationship between distribution width and mean of the particle size at the top of the clouds and a deviation from this behavior for particle sizes larger than 40 nm, most often in the lower part of the layer. The vertically integrated particle properties show that 65% of the data follows the linear relationship with a slope of 0.42±0.02 for mean particle sizes up to 40 nm. For the vertically resolved particle properties (Δz = Combining double low line 0.15 km) the slope is comparable and about 0.39±0.03. For particles larger than 40 nm the distribution width becomes nearly independent of particle size and even decreases in the lower part of the layer. We compare our observations to microphysical modeling of noctilucent clouds and find that the distribution width depends on turbulence, the time that turbulence can act (cloud age), and the sampling volume/time (atmospheric variability). The model results nicely reproduce the measurements and show that the observed slope can be explained by eddy diffusion profiles as observed from rocket measurements. © 2010 Author(s).
  • Item
    The noctilucent cloud (NLC) display during the ECOMA/MASS sounding rocket flights on 3 August 2007: Morphology on global to local scales
    (München : European Geopyhsical Union, 2009) Baumgarten, G.; Fiedler, J.; Fricke, K.H.; Gerding, M.; Hervig, M.; Hoffmann, P.; Müller, N.; Pautet, P.-D.; Rapp, M.; Robert, C.; Rusch, D.; von Savigny, C.; Singer, W.
    During the ECOMA/MASS rocket campaign large scale NLC/PMC was observed by satellite, lidar and camera from polar to mid latitudes. We examine the observations from different instruments to investigate the morphology of the cloud. Satellite observations show a planetary wave 2 structure. Lidar observations from Kühlungsborn (54° N), Esrange (68° N) and ALOMAR (69° N) show a highly dynamic NLC layer. Under favorable solar illumination the cloud is also observable by ground-based cameras. The cloud was detected by cameras from Trondheim (63° N), Juliusruh (55° N) and Kühlungsborn. We investigate planetary scale morphology and local scale gravity wave structures, important for the interpretation of the small scale rocket soundings. We compare in detail the lidar observations with the NLC structure observed by the camera in Trondheim. The ALOMAR RMR-lidar observed only a faint NLC during the ECOMA launch window, while the camera in Trondheim showed a strong NLC display in the direction of ALOMAR. Using the high resolution camera observations (t~30 s, Δx<5 km) and the wind information from the meteor radar at ALOMAR we investigate the formation and destruction of NLC structures. We observe that the NLC brightness is reduced by a factor of 20–40 within 100 s which can be caused by a temperature about 15 K above the frostpoint temperature. A horizontal temperature gradient of more than 3 K/km is estimated.
  • Item
    First in situ measurement of the vertical distribution of ice volume in a mesospheric ice cloud during the ECOMA/MASS rocket-campaign
    (München : European Geopyhsical Union, 2009) Rapp, M.; Strelnikova, I.; Strelnikov, B.; Latteck, R.; Baumgarten, G.; Li, Q.; Megner, L.; Gumbel, J.; Friedrich, M.; Hoppe, U.-P.; Robertson, S.
    We present in situ observations of mesospheric ice particles with a new particle detector which combines a classical Faraday cup with the active photoionization of particles and subsequent detection of photoelectrons. Our observations of charged particles and free electrons within a decaying PMSE-layer reveal that the presence of charged particles is a necessary but not sufficient condition for the presence of PMSE. That is, additional requirements like a sufficiently large electron density – which we here estimate to be on the order of ~100 cm−3 – and the presence of small scale structures (commonly assumed to be caused by turbulence) need to be satisfied. Our photoelectron measurements reveal a very strong horizontal structuring of the investigated ice layer, i.e., a very broad layer (82–88 km) seen on the upleg is replaced by a narrow layer from 84.5–86 km only 50 km apart on the downleg of the rocket flight. Importantly, the qualitative structure of these photoelectron profiles is in remarkable qualitative agreement with photometer measurements on the same rocket thus demonstrating the reliability of this new technique. We then show that the photoelectron currents are a unique function of the ice particle volume density (and hence ice mass) within an uncertainty of only 15% and we derive corresponding altitude profiles of ice volume densities. Derived values are in the range ~2–8×10−14 cm3/cm3 (corresponding to mass densities of ~20–80 ng/m3, and water vapor mixing ratios of 3–12 ppm) and are the first such estimates with the unique spatial resolution of an in situ measurement.
  • Item
    Mass analysis of charged aerosol particles in NLC and PMSE during the ECOMA/MASS campaign
    (München : European Geopyhsical Union, 2009) Robertson, S.; Horányi, M.; Knappmiller, S.; Sternovsky, Z.; Holzworth, R.; Shimogawa, M.; Friedrich, M.; Torkar, K.; Gumbel, J.; Megner, L.; Baumgarten, G.; Latteck, R.; Rapp, M.; Hoppe, U.-P.; Hervig, M.E.
    MASS (Mesospheric Aerosol Sampling Spectrometer) is a multichannel mass spectrometer for charged aerosol particles, which was flown from the Andøya Rocket Range, Norway, through NLC and PMSE on 3 August 2007 and through PMSE on 6 August 2007. The eight-channel analyzers provided for the first time simultaneous measurements of the charge density residing on aerosol particles in four mass ranges, corresponding to ice particles with radii <0.5 nm (including ions), 0.5–1 nm, 1–2 nm, and >3 nm (approximately). Positive and negative particles were recorded on separate channels. Faraday rotation measurements provided electron density and a means of checking charge density measurements made by the spectrometer. Additional complementary measurements were made by rocket-borne dust impact detectors, electric field booms, a photometer and ground-based radar and lidar. The MASS data from the first flight showed negative charge number densities of 1500–3000 cm−3 for particles with radii >3 nm from 83–88 km approximately coincident with PMSE observed by the ALWIN radar and NLC observed by the ALOMAR lidar. For particles in the 1–2 nm range, number densities of positive and negative charge were similar in magnitude (~2000 cm−3) and for smaller particles, 0.5–1 nm in radius, positive charge was dominant. The occurrence of positive charge on the aerosol particles of the smallest size and predominately negative charge on the particles of largest size suggests that nucleation occurs on positive condensation nuclei and is followed by collection of negative charge during subsequent growth to larger size. Faraday rotation measurements show a bite-out in electron density that increases the time for positive aerosol particles to be neutralized and charged negatively. The larger particles (>3 nm) are observed throughout the NLC region, 83–88 km, and the smaller particles are observed primarily at the high end of the range, 86–88 km. The second flight into PMSE alone at 84–88 km, found only small number densities (~500 cm−3) of particles >3 nm in a narrow altitude range, 86.5–87.5 km. Both positive (~2000 cm−3) and negative (~4500 cm−3) particles with radii 1–2 nm were detected from 85–87.5 km.
  • Item
    Simultaneous in situ measurements of small-scale structures in neutral, plasma, and atomic oxygen densities during the WADIS sounding rocket project
    (Göttingen : Copernicus GmbH, 2019) Strelnikov, B.; Eberhart, M.; Friedrich, M.; Hedin, J.; Khaplanov, M.; Baumgarten, G.; Williams, B.P.; Staszak, T.; Asmus, H.; Strelnikova, I.; Latteck, R.; Grygalashvyly, M.; Lübken, F.-J.; Höffner, J.; Wörl, R.; Gumbel, J.; Löhle, S.; Fasoulas, S.; Rapp, M.; Barjatya, A.; Taylor, M.J.; Pautet, P.-D.
    In this paper we present an overview of measurements conducted during the WADIS-2 rocket campaign. We investigate the effect of small-scale processes like gravity waves and turbulence on the distribution of atomic oxygen and other species in the mesosphere-lower thermosphere (MLT) region. Our analysis suggests that density fluctuations of atomic oxygen are coupled to fluctuations of other constituents, i.e., plasma and neutrals. Our measurements show that all measured quantities, including winds, densities, and temperatures, reveal signatures of both waves and turbulence. We show observations of gravity wave saturation and breakdown together with simultaneous measurements of generated turbulence. Atomic oxygen inside turbulence layers shows two different spectral behaviors, which might imply a change in its diffusion properties. © 2019 Author(s).