Search Results

Now showing 1 - 5 of 5
  • Item
    Long-term lidar observations of polar stratospheric clouds at Esrange in northern Sweden
    (Milton Park : Taylor & Francis, 2005) Blum, U.; Fricke, K.H.; Müller, K.P.; Siebert, J.; Baumgarten, G.
    Polar stratospheric clouds (PSCs) play a key role in the depletion of polar ozone. The type of cloud and the length of time for which it exists are crucial for the amount of chlorine activation during the polar night. The Bonn University backscatter lidar at Esrange in northern Sweden (68◦N, 21◦E) is well equipped for long-term observation and classification of these clouds. Nearly continuous measurements through several winters are rare, in particular in wave-active regions like Esrange. Lidar measurements have been performed each winter since 1997—a total of more than 2000 h of observation time has been accumulated, including more than 300 h with PSCs. Analysis of this unique data set leads to a classification scheme with four different scattering characteristics which can be associated with four different cloud types: (1) supercooled ternary solution (STS), (2) nitric acid trihydrate (NAT), (3) ice and (4) mixtures of solid and liquid particles. The analysis of observations over seven winters gives an overview of the frequency of appearance of the individual PSC types. Most of the clouds contain layers of different PSC types. The analysis of these layers shows STS and mixed clouds to occur most frequently, with more than 39% and 37% of all PSC observations, respectively, whereas NAT (15%) and ice clouds (9%) are seen only rarely. The lidar is located close to the Scandinavian mountain ridge, which is a major source of orographically induced gravity waves that can rapidly cool the atmosphere below cloud formation temperatures. Comparing the individual existence temperature of the observed cloud type with the synoptic-scale temperature provided by the European Centre for Medium-range Weather Forecasts (ECMWF) gives information on the frequency of synoptically and wave-induced PSCs. Further, the analysis of ECMWF temperature and wind data gives an estimate of the transparency of the atmosphere to stationary gravity waves. During more than 80% of all PSC observations in synoptic-scale temperatures which were too warm the atmosphere was transparent for stationary gravity waves. Our measurements show that dynamically induced cooling is crucial for the existence of PSCs above Esrange. In particular ice PSCs are observed only in situations where there are gravity waves.
  • Item
    Polar stratospheric cloud observations by MIPAS on ENVISAT: Detection method, validation and analysis of the northern hemisphere winter 2002/2003
    (München : European Geopyhsical Union, 2005) Spang, R.; Remedios, J.J.; Kramer, L.J.; Poole, L.R.; Fromm, M.D.; Müller, M.; Baumgarten, G.; Konopka, P.
    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on ENVISAT has made extensive measurements of polar stratospheric clouds (PSCs) in the northern hemisphere winter 2002/2003. A PSC detection method based on a ratio of radiances (the cloud index) has been implemented for MIPAS and is validated in this study with respect to ground-based lidar and space borne occultation measurements. A very good correspondence in PSC sighting and cloud altitude between MIPAS detections and those of other instruments is found for cloud index values of less than four. Comparisons with data from the Stratospheric Aerosol and Gas Experiment (SAGE) III are used to further show that the sensitivity of the MIPAS detection method for this threshold value of cloud index is approximately equivalent to an extinction limit of 10-3km-1 at 1022nm, a wavelength used by solar occultation experiments. The MIPAS cloud index data are subsequently used to examine, for the first time with any technique, the evolution of PSCs throughout the Arctic polar vortex up to a latitude close to 90° north on a near-daily basis. We find that the winter of 2002/2003 is characterised by three phases of very different PSC activity. First, an unusual, extremely cold phase in the first three weeks of December resulted in high PSC occurrence rates. This was followed by a second phase of only moderate PSC activity from 5-13 January, separated from the first phase by a minor warming event. Finally there was a third phase from February to the end of March where only sporadic and mostly weak PSC events took place. The composition of PSCs during the winter period has also been examined, exploiting in particular an infra-red spectral signature which is probably characteristic of NAT. The MIPAS observations show the presence of these particles on a number of occasions in December but very rarely in January. The PSC type differentiation from MIPAS indicates that future comparisons of PSC observations with microphysical and denitrification models might be revealing about aspects of solid particle existence and location.
  • Item
    Noctilucent clouds and the mesospheric water vapour: The past decade
    (München : European Geopyhsical Union, 2004) von Zahn, U.; Baumgarten, G.; Berger, U.; Fiedler, J.; Hartogh, P.
    The topic of this paper is the sensitivity of the brightness of noctilucent clouds (NLC) on the ambient water vapour mixing ratio f(H2O). Firstly, we use state-of-the-art models of NLC layer formation to predict NLC brightness changes in response to changes in the 80km mixing ratio f(H2O) for the two cases of ground-based 532nm lidar observations at 69° N and for hemispheric satellite SBUV observations at 252nm wavelength. In this study, we include a re-evaluation of the sensitivity of NLC brightness to changes in solar Lyman α flux. Secondly, we review observations of episodic changes in f(H2O) and those in NLC brightness, the former being available since 1992, the latter since 1979. To this review, we add a new series of observations of f(H2O), performed in the Arctic summer at the ALOMAR observatory. The episodic change exhibited by the Arctic summer means of f(H2O) turns out to be quite different from all those derived from annual means of f(H2O). The latter indicate that since 1996 a significant reduction of annually averaged upper mesospheric water vapour has occurred at low, mid, and high latitudes. These decreases of f(H2O) have been observed over the same time period in which a slow increase of SBUV NLC albedo has occurred. From this scenario and additional arguments we conclude that the cause for the observed long-term increase in NLC albedo remains to be identified. We close with comments on the very different character of decadal variations in NLC brightness and occurrence rate.
  • Item
    Simultaneous lidar observations of temperatures and waves in the polar middle atmosphere on the east and west side of the Scandinavian mountains: A case study on 19/20 January 2003
    (München : European Geopyhsical Union, 2004) Blum, U.; Fricke, K.H.; Baumgarten, G.; Schöch, A.
    Atmospheric gravity waves have been the subject of intense research for several decades because of their extensive effects on the atmospheric circulation and the temperature structure. The U. Bonn lidar at the Esrange and the ALOMAR RMR lidar at the Andøya Rocket Range are located in northern Scandinavia 250 km apart on the east and west side of the Scandinavian mountain ridge. During January and February 2003 both lidar systems conducted measurements and retrieved atmospheric temperatures. On 19/20 January 2003 simultaneous measurements for more than 7 h were possible. Although during most of the campaign time the atmosphere was not transparent for the propagation of orographically induced gravity waves, they were nevertheless observed at both lidar stations with considerable amplitudes during these simultaneous measurements. And while the source of the observed waves cannot be determined unambiguously, the observations show many characteristics of orographically excited gravity waves. The wave patterns at ALOMAR show a random distribution with time whereas at the Esrange a persistency in the wave patterns is observable. This persistency can also be found in the distribution of the most powerful vertical wavelengths. The mode values are both at about 5 km vertical wavelength, however the distributions are quite different, narrow at the Esrange with values from λz=2–6 km and broad at ALOMAR, covering λz=1–12 km vertical wavelength. In particular the difference between the observations at ALOMAR and at the Esrange can be understood by different orographic conditions while the propagation conditions were quite similar. At both stations the waves deposit energy in the atmosphere with increasing altitude, which leads to a decrease of the observed gravity wave potential energy density with altitude. The meteorological situation during these measurements was different from common winter situations. The ground winds were mostly northerlies, changed in the upper troposphere and lower stratosphere to westerlies and returned to northerlies in the middle stratosphere.
  • Item
    Comparison of NLC particle sizes derived from SCIAMACHY/Envisat observations with ground-based LIDAR measurements at ALOMAR (69° N)
    (München : European Geopyhsical Union, 2009) von Savigny, C.; Robert, C.E.; Baumgarten, G.; Bovensmann, H.; Burrows, J.P.
    SCIAMACHY, the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY has provided measurements of limb-scattered solar radiation in the 220 nm to 2380 nm wavelength range since summer of 2002. Measurements in the UV spectral range are well suited for the retrieval of particle sizes of noctilucent clouds (NLCs) and have been used to compile the largest existing satellite data base of NLC particle sizes. This paper presents a comparison of SCIAMACHY NLC size retrievals with the extensive NLC particle size data set based on ground-based LIDAR measurements at the Arctic LIDAR Observatory for Middle Atmosphere Research (ALOMAR, 69° N, 16° E) for the Northern Hemisphere NLC seasons 2003 to 2007. Most of the presented SCIAMACHY NLC particle size retrievals are based on cylindrical particles and a Gaussian particle size distribution with a fixed width of 24 nm. If the differences in spatial as well as vertical resolution between SCIAMACHY and the ALOMAR LIDAR are taken into account, very good agreement is found. The mean particle size derived from SCIAMACHY limb observations for the ALOMAR overpasses in 2003 to 2007 is 56.2 nm with a standard deviation of 12.5 nm, and the LIDAR observations yield a value of 54.2 nm with a standard deviation of 17.4 nm.