Search Results

Now showing 1 - 8 of 8
  • Item
    Large mesospheric ice particles at exceptionally high altitudes
    (München : European Geopyhsical Union, 2009) Megner, L.; Khaplanov, M.; Baumgarten, G.; Gumbel, J.; Stegman, J.; Strelnikov, B.; Robertson, S.
    We here report on the characteristics of exceptionally high Noctilucent clouds (NLC) that were detected with rocket photometers during the ECOMA/MASS campaign at Andøya, Norway 2007. The results from three separate flights are shown and discussed in connection to lidar measurements. Both the lidar measurements and the large difference between various rocket passages through the NLC show that the cloud layer was inhomogeneous on large scales. Two passages showed a particularly high, bright and vertically extended cloud, reaching to approximately 88 km. Long time series of lidar measurements show that NLC this high are very rare, only one NLC measurement out of thousand reaches above 87 km. The NLC is found to consist of three distinct layers. All three were bright enough to allow for particle size retrieval by phase function analysis, even though the lowest layer proved too horizontally inhomogeneous to obtain a trustworthy result. Large particles, corresponding to an effective radius of 50 nm, were observed both in the middle and top of the NLC. The present cloud does not comply with the conventional picture that NLC ice particles nucleate near the temperature minimum and grow to larger sizes as they sediment to lower altitudes. Strong up-welling, likely caused by gravity wave activity, is required to explain its characteristics.
  • Item
    Solar and lunar tides in noctilucent clouds as determined by ground-based lidar
    (Göttingen : Copernicus GmbH, 2018) Fiedler, J.; Baumgarten, G.
    Noctilucent clouds (NLCs) occur during summer from midlatitudes to high latitudes. They consist of nanometer-sized ice particles in an altitude range from 80 to 90 km and are sensitive to ambient temperature and water vapor content, which makes them a suitable tracer for variability on all timescales. The data set acquired by the ALOMAR Rayleigh-Mie-Raman (RMR) lidar covers 21 years and is investigated regarding tidal signatures in NLCs. For the first time solar and lunar tidal parameters in NLCs were determined simultaneously from the same data. Several NLC parameters are subject to persistent mean variations throughout the solar day as well as the lunar day. Variations with lunar time are generally smaller compared to variations with solar time. NLC occurrence frequency shows the most robust imprint of the lunar semidiurnal tide. Its amplitude is about 50 % of the solar semidiurnal tide, which is surprisingly large. Phase progressions of NLC occurrence frequency indicate upward propagating solar tides. Below 84 km altitude the corresponding vertical wavelengths are between 20 and 30 km. For the lunar semidiurnal tide phase progressions vary symmetrically with respect to the maximum of the NLC layer. © Author(s) 2018.
  • Item
    Quantification of waves in lidar observations of noctilucent clouds at scales from seconds to minutes
    (Göttingen : Copernicus, 2013) Kaifler, N.; Baumgarten, G.; Fiedler, J.
    We present small-scale structures and waves observed in noctilucent clouds (NLC) by lidar at an unprecedented temporal resolution of 30 s or less. The measurements were taken with the Rayleigh/Mie/Raman lidar at the ALOMAR observatory in northern Norway (69 N) in the years 2008-2011. We find multiple layer NLC in 7.9% of the time for a brightness threshold of δ β 12 × 10-10 m-1 sr-1. In comparison to 10 min averaged data, the 30 s dataset shows considerably more structure. For limited periods, quasi-monochromatic waves in NLC altitude variations are common, in accord with ground-based NLC imagery. For the combined dataset, on the other hand, we do not find preferred periods but rather significant periods at all timescales observed (1 min to 1 h). Typical wave amplitudes in the layer vertical displacements are 0.2 km with maximum amplitudes up to 2.3 km. Average spectral slopes of temporal altitude and brightness variations are-2.01 ± 0.25 for centroid altitude,-1.41 ± 0.24 for peak brightness and-1.73 ± 0.25 for integrated brightness. Evaluating a new single-pulse detection system, we observe altitude variations of 70 s period and spectral slopes down to a scale of 10 s. We evaluate the suitability of NLC parameters as tracers for gravity waves.
  • Item
    A new description of probability density distributions of polar mesospheric clouds
    (Göttingen : Copernicus GmbH, 2019) Berger, U.; Baumgarten, G.; Fiedler, J.; Lübken, F.-J.
    In this paper we present a new description of statistical probability density functions (pdfs) of polar mesospheric clouds (PMCs). The analysis is based on observations of maximum backscatter, ice mass density, ice particle radius, and number density of ice particles measured by the ALOMAR Rayleigh-Mie-Raman lidar for all PMC seasons from 2002 to 2016. From this data set we derive a new class of pdfs that describe the statistics of PMC events that is different from previous statistical methods using the approach of an exponential distribution commonly named the g distribution. The new analysis describes successfully the probability distributions of ALOMAR lidar data. It turns out that the former g-function description is a special case of our new approach. In general the new statistical function can be applied to many kinds of different PMC parameters, e.g., maximum backscatter, integrated backscatter, ice mass density, ice water content, ice particle radius, ice particle number density, or albedo measured by satellites. As a main advantage the new method allows us to connect different observational PMC distributions of lidar and satellite data, and also to compare with distributions from ice model studies. In particular, the statistical distributions of different ice parameters can be compared with each other on the basis of a common assessment that facilitates, for example, trend analysis of PMC. © Author(s) 2019.
  • Item
    On microphysical processes of noctilucent clouds (NLC): Observations and modeling of mean and width of the particle size-distribution
    (Göttingen : Copernicus, 2010) Baumgarten, G.; Fiedler, J.; Rapp, M.
    Noctilucent clouds (NLC) in the polar summer mesopause region have been observed in Norway (69° N, 16° E) between 1998 and 2009 by 3-color lidar technique. Assuming a mono-modal Gaussian size distribution we deduce mean and width of the particle sizes throughout the clouds. We observe a quasi linear relationship between distribution width and mean of the particle size at the top of the clouds and a deviation from this behavior for particle sizes larger than 40 nm, most often in the lower part of the layer. The vertically integrated particle properties show that 65% of the data follows the linear relationship with a slope of 0.42±0.02 for mean particle sizes up to 40 nm. For the vertically resolved particle properties (Δz = Combining double low line 0.15 km) the slope is comparable and about 0.39±0.03. For particles larger than 40 nm the distribution width becomes nearly independent of particle size and even decreases in the lower part of the layer. We compare our observations to microphysical modeling of noctilucent clouds and find that the distribution width depends on turbulence, the time that turbulence can act (cloud age), and the sampling volume/time (atmospheric variability). The model results nicely reproduce the measurements and show that the observed slope can be explained by eddy diffusion profiles as observed from rocket measurements. © 2010 Author(s).
  • Item
    The noctilucent cloud (NLC) display during the ECOMA/MASS sounding rocket flights on 3 August 2007: Morphology on global to local scales
    (München : European Geopyhsical Union, 2009) Baumgarten, G.; Fiedler, J.; Fricke, K.H.; Gerding, M.; Hervig, M.; Hoffmann, P.; Müller, N.; Pautet, P.-D.; Rapp, M.; Robert, C.; Rusch, D.; von Savigny, C.; Singer, W.
    During the ECOMA/MASS rocket campaign large scale NLC/PMC was observed by satellite, lidar and camera from polar to mid latitudes. We examine the observations from different instruments to investigate the morphology of the cloud. Satellite observations show a planetary wave 2 structure. Lidar observations from Kühlungsborn (54° N), Esrange (68° N) and ALOMAR (69° N) show a highly dynamic NLC layer. Under favorable solar illumination the cloud is also observable by ground-based cameras. The cloud was detected by cameras from Trondheim (63° N), Juliusruh (55° N) and Kühlungsborn. We investigate planetary scale morphology and local scale gravity wave structures, important for the interpretation of the small scale rocket soundings. We compare in detail the lidar observations with the NLC structure observed by the camera in Trondheim. The ALOMAR RMR-lidar observed only a faint NLC during the ECOMA launch window, while the camera in Trondheim showed a strong NLC display in the direction of ALOMAR. Using the high resolution camera observations (t~30 s, Δx<5 km) and the wind information from the meteor radar at ALOMAR we investigate the formation and destruction of NLC structures. We observe that the NLC brightness is reduced by a factor of 20–40 within 100 s which can be caused by a temperature about 15 K above the frostpoint temperature. A horizontal temperature gradient of more than 3 K/km is estimated.
  • Item
    Coincident measurements of PMSE and NLC above ALOMAR (69° N, 16° E) by radar and lidar from 1999-2008
    (Göttingen : Copernicus, 2011) Kaifler, N.; Baumgarten, G.; Fiedler, J.; Latteck, R.; Lübken, F.-J.; Rapp, M.
    Polar Mesosphere Summer Echoes (PMSE) and Noctilucent Clouds (NLC) have been routinely measured at the ALOMAR research facility in Northern Norway (69° N, 16° E) by lidar and radar, respectively. 2900 h of lidar measurements by the ALOMAR Rayleigh/Mie/Raman lidar were combined with almost 18 000 h of radar measurements by the ALWIN VHF radar, all taken during the years 1999 to 2008, to study simultaneous and common-volume observations of both phenomena. PMSE and NLC are known from both theory and observations to be positively linked. We quantify the occurrences of PMSE and/or NLC and relations in altitude, especially with respect to the lower layer boundaries. The PMSE occurrence rate is with 75.3% considerably higher than the NLC occurrence rate of 19.5%. For overlapping PMSE and NLC observations, we confirm the coincidence of the lower boundaries and find a standard deviation of 1.26 km, hinting at very fast sublimation rates. However, 10.1% of all NLC measurements occur without accompanying PMSE. Comparison of occurrence rates with solar zenith angle reveals that NLC without PMSE mostly occur around midnight indicating that the ice particles were not detected by the radar due to the reduced electron density.
  • Item
    Comparison of NLC particle sizes derived from SCIAMACHY/Envisat observations with ground-based LIDAR measurements at ALOMAR (69° N)
    (München : European Geopyhsical Union, 2009) von Savigny, C.; Robert, C.E.; Baumgarten, G.; Bovensmann, H.; Burrows, J.P.
    SCIAMACHY, the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY has provided measurements of limb-scattered solar radiation in the 220 nm to 2380 nm wavelength range since summer of 2002. Measurements in the UV spectral range are well suited for the retrieval of particle sizes of noctilucent clouds (NLCs) and have been used to compile the largest existing satellite data base of NLC particle sizes. This paper presents a comparison of SCIAMACHY NLC size retrievals with the extensive NLC particle size data set based on ground-based LIDAR measurements at the Arctic LIDAR Observatory for Middle Atmosphere Research (ALOMAR, 69° N, 16° E) for the Northern Hemisphere NLC seasons 2003 to 2007. Most of the presented SCIAMACHY NLC particle size retrievals are based on cylindrical particles and a Gaussian particle size distribution with a fixed width of 24 nm. If the differences in spatial as well as vertical resolution between SCIAMACHY and the ALOMAR LIDAR are taken into account, very good agreement is found. The mean particle size derived from SCIAMACHY limb observations for the ALOMAR overpasses in 2003 to 2007 is 56.2 nm with a standard deviation of 12.5 nm, and the LIDAR observations yield a value of 54.2 nm with a standard deviation of 17.4 nm.