Search Results

Now showing 1 - 4 of 4
  • Item
    Pricing options under rough volatility with backward SPDEs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Bayer, Christian; Qiu, Jinniao; Yao, Yao
    In this paper, we study the option pricing problems for rough volatility models. As the framework is non-Markovian, the value function for a European option is not deterministic; rather, it is random and satisfies a backward stochastic partial differential equation (BSPDE). The existence and uniqueness of weak solutions is proved for general nonlinear BSPDEs with unbounded random leading coefficients whose connections with certain forward-backward stochastic differential equations are derived as well. These BSPDEs are then used to approximate American option prices. A deep learning-based method is also investigated for the numerical approximations to such BSPDEs and associated non-Markovian pricing problems. Finally, the examples of rough Bergomi type are numerically computed for both European and American options.
  • Item
    Weak error rates for option pricing under linear rough volatility
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Bayer, Christian; Hall, Eric; Tempone, Raúl F.
    In quantitative finance, modeling the volatility structure of underlying assets is vital to pricing options. Rough stochastic volatility models, such as the rough Bergomi model [Bayer, Friz, Gatheral, Quantitative Finance 16(6), 887-904, 2016], seek to fit observed market data based on the observation that the log-realized variance behaves like a fractional Brownian motion with small Hurst parameter, H < 1/2, over reasonable timescales. Both time series of asset prices and option-derived price data indicate that H often takes values close to 0.1 or less, i.e., rougher than Brownian motion. This change improves the fit to both option prices and time series of underlying asset prices while maintaining parsimoniousness. However, the non-Markovian nature of the driving fractional Brownian motion in rough volatility models poses severe challenges for theoretical and numerical analyses and for computational practice. While the explicit Euler method is known to converge to the solution of the rough Bergomi and similar models, its strong rate of convergence is only H. We prove rate H + 1/2 for the weak convergence of the Euler method for the rough Stein--Stein model, which treats the volatility as a linear function of the driving fractional Brownian motion, and, surprisingly, we prove rate one for the case of quadratic payoff functions. Indeed, the problem of weak convergence for rough volatility models is very subtle; we provide examples demonstrating the rate of convergence for payoff functions that are well approximated by second-order polynomials, as weighted by the law of the fractional Brownian motion, may be hard to distinguish from rate one empirically. Our proof uses Talay--Tubaro expansions and an affine Markovian representation of the underlying and is further supported by numerical experiments. These convergence results provide a first step toward deriving weak rates for the rough Bergomi model, which treats the volatility as a nonlinear function of the driving fractional Brownian motion.
  • Item
    Low-dimensional approximations of high-dimensional asset price models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Redmann, Martin; Bayer, Christian; Goyal, Pawan
    We consider high-dimensional asset price models that are reduced in their dimension in order to reduce the complexity of the problem or the effect of the curse of dimensionality in the context of option pricing. We apply model order reduction (MOR) to obtain a reduced system. MOR has been previously studied for asymptotically stable controlled stochastic systems with zero initial conditions. However, stochastic differential equations modeling price processes are uncontrolled, have non-zero initial states and are often unstable. Therefore, we extend MOR schemes and combine ideas of techniques known for deterministic systems. This leads to a method providing a good pathwise approximation. After explaining the reduction procedure, the error of the approximation is analyzed and the performance of the algorithm is shown conducting several numerical experiments. Within the numerics section, the benefit of the algorithm in the context of option pricing is pointed out.
  • Item
    Numerical smoothing with hierarchical adaptive sparse grids and quasi-Monte Carlo methods for efficient option pricing
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Bayer, Christian; Ben Hammouda, Chiheb; Tempone, Raúl F.
    When approximating the expectation of a functional of a stochastic process, the efficiency and performance of deterministic quadrature methods, such as sparse grid quadrature and quasi-Monte Carlo (QMC) methods, may critically depend on the regularity of the integrand. To overcome this issue and reveal the available regularity, we consider cases in which analytic smoothing cannot be performed, and introduce a novel numerical smoothing approach by combining a root finding algorithm with one-dimensional integration with respect to a single well-selected variable. We prove that under appropriate conditions, the resulting function of the remaining variables is a highly smooth function, potentially affording the improved efficiency of adaptive sparse grid quadrature (ASGQ) and QMC methods, particularly when combined with hierarchical transformations (i.e., Brownian bridge and Richardson extrapolation on the weak error). This approach facilitates the effective treatment of high dimensionality. Our study is motivated by option pricing problems, and our focus is on dynamics where the discretization of the asset price is necessary. Based on our analysis and numerical experiments, we show the advantages of combining numerical smoothing with the ASGQ and QMC methods over ASGQ and QMC methods without smoothing and the Monte Carlo approach.