Search Results

Now showing 1 - 3 of 3
  • Item
    HelixJet: An innovative plasma source for next-generation additive manufacturing (3D printing)
    (Hoboken, NJ : Wiley Interscience, 2020) Schäfer, Jan; Quade, Antje; Abrams, Kerry J.; Sigeneger, Florian; Becker, Markus M.; Majewski, Candice; Rodenburg, Cornelia
    A novel plasma source (HelixJet) for use in additive manufacturing (AM)/3D printing is proposed. The HelixJet is a capacitively coupled radio frequency plasma with a double-helix electrode configuration that generates a surprisingly stable and homogeneous glow plasma at low flow rates of argon and its mixtures at atmospheric pressure. The HelixJet was tested on three polyamide powders usually used to produce parts by laser sintering, a powder-based AM process, to form local deposits. The chemical composition of such plasma-printed samples is compared with thermally produced and laser-sintered samples with respect to differences in morphology that result from the different thermal cycles on several length scales. Plasma prints exhibit unique features attributable to the nonequilibrium chemistry and to the high-speed heat exchange.
  • Item
    Plasma-MDS, a metadata schema for plasma science with examples from plasma technology
    (London : Nature Publ. Group, 2020) Franke, Steffen; Paulet, Lucian; Schäfer, Jan; O'Connell, Deborah; Becker, Markus M.
    A metadata schema, named Plasma-MDS, is introduced to support research data management in plasma science. Plasma-MDS is suitable to facilitate the publication of research data following the FAIR principles in domain-specific repositories and with this the reuse of research data for data driven plasma science. In accordance with common features in plasma science and technology, the metadata schema bases on the concept to separately describe the source generating the plasma, the medium in which the plasma is operated in, the target the plasma is acting on, and the diagnostics used for investigation of the process under consideration. These four basic schema elements are supplemented by a schema element with various attributes for description of the resources, i.e. the digital data obtained by the applied diagnostic procedures. The metadata schema is first applied for the annotation of datasets published in INPTDAT—the interdisciplinary data platform for plasma technology. © 2020, The Author(s).
  • Item
    Adamant: a JSON schema-based metadata editor for research data management workflows [version 1; peer review: 2 approved]
    (London : F1000 Research Ltd, 2022) Chaerony Siffa, Ihda; Schäfer, Jan; Becker, Markus M.
    The web tool Adamant has been developed to systematically collect research metadata as early as the conception of the experiment. Adamant enables a continuous, consistent, and transparent research data management (RDM) process, which is a key element of good scientific practice ensuring the path to Findable, Accessible, Interoperable, Reusable (FAIR) research data. It simplifies the creation of on-demand metadata schemas and the collection of metadata according to established or new standards. The approach is based on JavaScript Object Notation (JSON) schema, where any valid schema can be presented as an interactive web-form. Furthermore, Adamant eases the integration of numerous available RDM methods and software tools into the everyday research activities of especially small independent laboratories. A programming interface allows programmatic integration with other software tools such as electronic lab books or repositories. The user interface (UI) of Adamant is designed to be as user friendly as possible. Each UI element is self-explanatory and intuitive to use, which makes it accessible for users that have little to no experience with JSON format and programming in general. Several examples of research data management workflows that can be implemented using Adamant are introduced. Adamant (client-only version) is available from: https://plasma-mds.github.io/adamant.