Search Results

Now showing 1 - 6 of 6
  • Item
    Adamant: a JSON schema-based metadata editor for research data management workflows [version 1; peer review: 2 approved]
    (London : F1000 Research Ltd, 2022) Chaerony Siffa, Ihda; Schäfer, Jan; Becker, Markus M.
    The web tool Adamant has been developed to systematically collect research metadata as early as the conception of the experiment. Adamant enables a continuous, consistent, and transparent research data management (RDM) process, which is a key element of good scientific practice ensuring the path to Findable, Accessible, Interoperable, Reusable (FAIR) research data. It simplifies the creation of on-demand metadata schemas and the collection of metadata according to established or new standards. The approach is based on JavaScript Object Notation (JSON) schema, where any valid schema can be presented as an interactive web-form. Furthermore, Adamant eases the integration of numerous available RDM methods and software tools into the everyday research activities of especially small independent laboratories. A programming interface allows programmatic integration with other software tools such as electronic lab books or repositories. The user interface (UI) of Adamant is designed to be as user friendly as possible. Each UI element is self-explanatory and intuitive to use, which makes it accessible for users that have little to no experience with JSON format and programming in general. Several examples of research data management workflows that can be implemented using Adamant are introduced. Adamant (client-only version) is available from: https://plasma-mds.github.io/adamant.
  • Item
    Foundations of plasma standards
    (Bristol : IOP Publ., 2023) Alves, Luís L.; Becker, Markus M.; van Dijk, Jan; Gans, Timo; Go, David B.; Stapelmann, Katharina; Tennyson, Jonathan; Turner, Miles M.; Kushner, Mark J.
    The field of low-temperature plasmas (LTPs) excels by virtue of its broad intellectual diversity, interdisciplinarity and range of applications. This great diversity also challenges researchers in communicating the outcomes of their investigations, as common practices and expectations for reporting vary widely in the many disciplines that either fall under the LTP umbrella or interact closely with LTP topics. These challenges encompass comparing measurements made in different laboratories, exchanging and sharing computer models, enabling reproducibility in experiments and computations using traceable and transparent methods and data, establishing metrics for reliability, and in translating fundamental findings to practice. In this paper, we address these challenges from the perspective of LTP standards for measurements, diagnostics, computations, reporting and plasma sources. This discussion on standards, or recommended best practices, and in some cases suggestions for standards or best practices, has the goal of improving communication, reproducibility and transparency within the LTP field and fields allied with LTPs. This discussion also acknowledges that standards and best practices, either recommended or at some point enforced, are ultimately a matter of judgment. These standards and recommended practices should not limit innovation nor prevent research breakthroughs from having real-time impact. Ultimately, the goal of our research community is to advance the entire LTP field and the many applications it touches through a shared set of expectations.
  • Item
    Modeling of Atmospheric-Pressure Dielectric Barrier Discharges in Argon with Small Admixtures of Tetramethylsilane
    (Dordrecht : Springer Science + Business Media B.V., 2021) Loffhagen, Detlef; Becker, Markus M.; Czerny, Andreas K.; Klages, Claus-Peter
    A time-dependent, spatially one-dimensional fluid-Poisson model is applied to analyze the impact of small amounts of tetramethylsilane (TMS) as precursor on the discharge characteristics of an atmospheric-pressure dielectric barrier discharge (DBD) in argon. Based on an established reaction kinetics for argon, it includes a plasma chemistry for TMS, which is validated by measurements of the ignition voltage at the frequency f=86.2kHz for TMS amounts of up to 200 ppm. Details of both a reduced Ar-TMS reaction kinetics scheme and an extended plasma-chemistry model involving about 60 species and 580 reactions related to TMS are given. It is found that good agreement between measured and calculated data can be obtained, when assuming that 25% of the reactions of TMS with excited argon atoms with a rate coefficient of 3.0×10−16m3/s lead to the production of electrons due to Penning ionization. Modeling results for an applied voltage Ua,0=4kV show that TMS is depleted during the residence time of the plasma in the DBD, where the percentage consumption of TMS decreases with increasing TMS fraction because only a finite number of excited argon species is available to dissociate and/or ionize the precursor via energy transfer. Main species resulting from that TMS depletion are presented and discussed. In particular, the analysis clearly indicates that trimethylsilyl cations can be considered to be mainly responsible for the film formation.
  • Item
    HelixJet: An innovative plasma source for next-generation additive manufacturing (3D printing)
    (Hoboken, NJ : Wiley Interscience, 2020) Schäfer, Jan; Quade, Antje; Abrams, Kerry J.; Sigeneger, Florian; Becker, Markus M.; Majewski, Candice; Rodenburg, Cornelia
    A novel plasma source (HelixJet) for use in additive manufacturing (AM)/3D printing is proposed. The HelixJet is a capacitively coupled radio frequency plasma with a double-helix electrode configuration that generates a surprisingly stable and homogeneous glow plasma at low flow rates of argon and its mixtures at atmospheric pressure. The HelixJet was tested on three polyamide powders usually used to produce parts by laser sintering, a powder-based AM process, to form local deposits. The chemical composition of such plasma-printed samples is compared with thermally produced and laser-sintered samples with respect to differences in morphology that result from the different thermal cycles on several length scales. Plasma prints exhibit unique features attributable to the nonequilibrium chemistry and to the high-speed heat exchange.
  • Item
    Plasma parameters of microarcs towards minuscule discharge gap
    (Weinheim : Wiley-VCH, 2020) Baeva, Margarita; Loffhagen, Detlef; Becker, Markus M.; Siewert, Erwan; Uhrlandt, Dirk
    This paper describes the behaviour of the plasma parameters of microarcs generated between a cooled copper anode and a ceriated tungsten cathode by means of a one-dimensional unified non-equilibrium model for gap lengths between 15 and 200 μm and current densities from 2 × 105 up to 106 A/m2. The results obtained show that the decrease of the gap length to a few tens of micrometres for a given current density results in a progressive shrinking of the quasi-neutral bulk in the microplasma and its complete disappearance. The decrease of the gap length further leads to an increase of the discharge voltage and the electron temperature and to slightly less heating of the gas. © 2020 The Authors. Contributions to Plasma Physics Published by Wiley-VCH Verlag GmbH & Co. KGaA
  • Item
    Plasma-MDS, a metadata schema for plasma science with examples from plasma technology
    (London : Nature Publ. Group, 2020) Franke, Steffen; Paulet, Lucian; Schäfer, Jan; O'Connell, Deborah; Becker, Markus M.
    A metadata schema, named Plasma-MDS, is introduced to support research data management in plasma science. Plasma-MDS is suitable to facilitate the publication of research data following the FAIR principles in domain-specific repositories and with this the reuse of research data for data driven plasma science. In accordance with common features in plasma science and technology, the metadata schema bases on the concept to separately describe the source generating the plasma, the medium in which the plasma is operated in, the target the plasma is acting on, and the diagnostics used for investigation of the process under consideration. These four basic schema elements are supplemented by a schema element with various attributes for description of the resources, i.e. the digital data obtained by the applied diagnostic procedures. The metadata schema is first applied for the annotation of datasets published in INPTDAT—the interdisciplinary data platform for plasma technology. © 2020, The Author(s).