Search Results

Now showing 1 - 4 of 4
  • Item
    Above-threshold ionization in a bicircular field: Quantum orbits unfolding in a plane
    (Bristol : IOP Publ., 2017) Becker, W.; Milošević, D.B.
    Above-threshold ionization (ATI) of atoms by a strong bicircular laser field is investigated using the strong-field approximation and the quantum-orbit theory. The bicircular field consists of two coplanar counterrotating circularly polarized fields with a frequency ratio of 2:1. The velocity map of the angle-resolved ATI spectra, both for direct and rescattered electrons, reflects the shape of a parametric plot of the bicircular field and its symmetries. It is shown that the main characteristics of the ATI spectra can be explained using only a few quantum orbits having short travel times. We also analyze a recently discovered [Phys. Rev. A 93, 052402(R) (2016)] bicircular-field-induced spin asymmetry of the ATI electrons and show that the momentum dependence of the spin-asymmetry parameter is stronger for longer wavelengths.
  • Item
    Attosecond electron thermalization in laser-induced nonsequential multiple ionization: Hard versus glancing collisions
    (College Park, MD : Institute of Physics Publishing, 2008) Liu, X.; De Morisson Faria, C.F.; Becker, W.
    A recollision-based largely classical statistical model of laser-induced nonsequential multiple (N-fold) ionization of atoms is further explored. Upon its return to the ionic core, the first-ionized electron interacts with the other N - 1 bound electrons either through a contact or a Coulomb interaction. The returning electron may leave either immediately after this interaction or join the other electrons to form a thermalized complex which leaves the ion after the delay Δt, which is the sum of a thermalization time and a possible additional dwell time. Good agreement with the available triple and quadruple ionization data in neon and argon is obtained with the contact scenario and delays of Δt = 0.17 T and 0.265 T, respectively, with T the laser period. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Interference structure of above-threshold ionization versus above-threshold detachment
    (Bristol : IOP, 2012) Korneev, Ph.A.; Popruzhenko, S.V.; Goreslavski, S.P.; Becker, W.; Paulus, G.G.; Fetić, B.; Milošević, D.B.
    Laser-induced electron detachment or ionization of atoms and negative ions is considered. In the context of the saddle-point evaluation of the strong-field approximation (SFA), the velocity maps of the direct electrons (those that do not undergo rescattering) exhibit a characteristic structure due to the constructive and destructive interference of electrons liberated from their parent atoms/ions within certain windows of time. This structure is defined by the above-threshold ionization rings at fixed electron energy and by two sets of curves in momentum space on which destructive interference occurs. The spectra obtained with the SFA are compared with those obtained by numerical solution of the time-dependent Schrödinger equation. For detachment, the agreement is excellent. For ionization, the effect of the Coulomb field is most pronounced for electrons emitted in a direction close to laser polarization, while for nearperpendicular emission the qualitative appearance of the spectrum is unaffected.
  • Item
    Unified description of low-order above-threshold ionization on and off axis
    (Bristol : IOP Publ., 2016) Becker, W.; Milošević, D.B.
    A recently developed unified description of low-order above-threshold ionization (Becker et al 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204022; 2015 J. Phys. B: At. Mol. Opt. Phys. 48 151001) is revisited and extended. By considering the rescattering electron energies and angles at the classical cutoffs and the contributions of particular quantum-orbit solutions, it is shown that summing both the backward- and the forward-scattering contributions, within the low-frequency approximation, it is possible to reproduce the observed features of the ATI spectra both for low and high energies and both on and off the laser-polarization axis in the momentum plane.