Search Results

Now showing 1 - 4 of 4
  • Item
    Combining Biocompatible and Biodegradable Scaffolds and Cold Atmospheric Plasma for Chronic Wound Regeneration
    (Basel : Molecular Diversity Preservation International (MDPI), 2021) Emmert, Steffen; Pantermehl, Sven; Foth, Aenne; Waletzko-Hellwig, Janine; Hellwig, Georg; Bader, Rainer; Illner, Sabine; Grabow, Niels; Bekeschus, Sander; Weltmann, Klaus-Dieter; Jung, Ole; Boeckmann, Lars
    Skin regeneration is a quite complex process. Epidermal differentiation alone takes about 30 days and is highly regulated. Wounds, especially chronic wounds, affect 2% to 3% of the elderly population and comprise a heterogeneous group of diseases. The prevailing reasons to develop skin wounds include venous and/or arterial circulatory disorders, diabetes, or constant pressure to the skin (decubitus). The hallmarks of modern wound treatment include debridement of dead tissue, disinfection, wound dressings that keep the wound moist but still allow air exchange, and compression bandages. Despite all these efforts there is still a huge treatment resistance and wounds will not heal. This calls for new and more efficient treatment options in combination with novel biocompatible skin scaffolds. Cold atmospheric pressure plasma (CAP) is such an innovative addition to the treatment armamentarium. In one CAP application, antimicrobial effects, wound acidification, enhanced microcirculations and cell stimulation can be achieved. It is evident that CAP treatment, in combination with novel bioengineered, biocompatible and biodegradable electrospun scaffolds, has the potential of fostering wound healing by promoting remodeling and epithelialization along such temporarily applied skin replacement scaffolds.
  • Item
    Plasma medical oncology: Immunological interpretation of head and neck squamous cell carcinoma
    (Hoboken, NJ : Wiley Interscience, 2020) Witzke, Katharina; Seebauer, Christian; Jesse, Katja; Kwiatek, Elisa; Berner, Julia; Semmler, Marie‐Luise; Boeckmann, Lars; Emmert, Steffen; Weltmann, Klaus‐Dieter; Metelmann, Hans‐Robert; Bekeschus, Sander
    The prognosis of patients suffering from advanced-stage head and neck squamous cell carcinoma (HNSCC) remains poor. Medical gas plasma therapy receives growing attention as a novel anticancer modality. Our recent prospective observational study on HNSCC patients suffering from contaminated tumor ulcerations without lasting remission after first-line anticancer therapy showed remarkable efficacy of gas plasma treatment, with the ulcerated tumor surface decreasing by up to 80%. However, tumor growth relapsed, and this biphasic response may be a consequence of immunological and molecular changes in the tumor microenvironment that could be caused by (a) immunosuppression, (b) tumor cell adaption, (c) loss of microbe-induced immunostimulation, and/or (d) stromal cell adaption. These considerations may be vital for the design of clinical plasma trials in the future.
  • Item
    Optimized High-Content Imaging Screening Quantifying Micronuclei Formation in Polymer-Treated HaCaT Keratinocytes
    (Basel : MDPI, 2022) Saadati, Fariba; da Silva Brito, Walison Augusto; Emmert, Steffen; Bekeschus, Sander
    Research on nano- and micro-plastic particles (NMPPs) suggests their potential threat to human health. Some studies have even suggested genotoxic effects of NMPP exposure, such as micronuclei (MN) formation, while others found the opposite. To clarify the ability of NMPP to induce MN formation, we used non-malignant HaCaT keratinocytes and exposed these to a variety of polystyrene (PS) and poly methyl methacrylate (PMMA) particle types at different concentrations and three different sizes. Investigations were performed following acute (one day) and chronic exposure (five weeks) against cytotoxic (amino-modified NMPPs) and genotoxic (methyl methanesulfonate, MMS) positive controls. An optimized high-content imaging workflow was established strictly according to OECD guidelines for analysis. Algorithm-based object segmentation and MN identification led to computer-driven, unsupervised quantitative image analysis results on MN frequencies among the different conditions and thousands of cells per condition. This could only be realized using accutase, allowing for partial cell detachment for optimal identification of bi-nucleated cells. Cytotoxic amino-modified particles were not genotoxic; MMS was both. During acute and long-term studies, PS and PMMA particles were neither toxic nor increased MN formation, except for 1000 nm PS particles at the highest concentration of unphysiological 100 µg/mL. Interestingly, ROS formation was significantly decreased in this condition. Hence, most non-charged polymer particles were neither toxic nor genotoxic, while aminated particles were toxic but not genotoxic. Altogether, we present an optimized quantitative imaging workflow applied to a timely research question in environmental toxicity.
  • Item
    Patient-derived human basal and cutaneous squamous cell carcinoma tissues display apoptosis and immunomodulation following gas plasma exposure with a certified argon jet
    (Basel : Molecular Diversity Preservation International, 2021) Saadati, Fariba; Moritz, Juliane; Berner, Julia; Freund, Eric; Miebach, Lea; Helfrich, Iris; Stoffels, Ingo; Emmert, Steffen; Bekeschus, Sander
    Reactive oxygen species (ROS) have been subject of increasing interest in the pathophysiology and therapy of cancers in recent years. In skin cancer, ROS are involved in UV-induced tumorigenesis and its targeted treatment via, e.g., photodynamic therapy. Another recent technology for topical ROS generation is cold physical plasma, a partially ionized gas expelling dozens of reactive species onto its treatment target. Gas plasma technology is accredited for its wound-healing abilities in Europe, and current clinical evidence suggests that it may have beneficial effects against actinic keratosis. Since the concept of hormesis dictates that low ROS levels perform signaling functions, while high ROS levels cause damage, we investigated herein the antitumor activity of gas plasma in non-melanoma skin cancer. In vitro, gas plasma exposure diminished the metabolic activity, preferentially in squamous cell carcinoma cell (SCC) lines compared to non-malignant HaCaT cells. In patient-derived basal cell carcinoma (BCC) and SCC samples treated with gas plasma ex vivo, increased apoptosis was found in both cancer types. Moreover, the immunomodulatory actions of gas plasma treatment were found affecting, e.g., the expression of CD86 and the number of regulatory T-cells. The supernatants of these ex vivo cultured tumors were quantitatively screened for cytokines, chemokines, and growth factors, identifying CCL5 and GM-CSF, molecules associated with skin cancer metastasis, to be markedly decreased. These findings suggest gas plasma treatment to be an interesting future technology for non-melanoma skin cancer topical therapy.