Search Results

Now showing 1 - 2 of 2
  • Item
    Cold argon plasma as adjuvant tumour therapy on progressive head and neck cancer: A preclinical study
    (Basel : MDPI, 2019) Hasse, Sybille; Seebauer, Christian; Wende, Kristian; Schmidt, Anke; Metelmann, Hans-Robert; Woedtke, Thomas von; Bekeschus, Sander
    Investigating cold argon plasma (CAP) for medical applications is a rapidly growing, innovative field of research. The controllable supply of reactive oxygen and nitrogen species through CAP has the potential for utilization in tumour treatment. Maxillofacial surgery is limited if tumours grow on vital structures such as the arteria carotis. Here CAP could be considered as an option for adjuvant intraoperative tumour therapy especially in the case of squamous cell carcinoma of the head and neck. Further preclinical research is necessary to investigate the efficacy of this technology for future clinical applications in cancer treatment. Initially, a variety of in vitro assays was performed on two cell lines that served as surrogate for the squamous cell carcinoma (SCC) and healthy tissue, respectively. Cell viability, motility and the activation of apoptosis in SCC cells (HNO97) was compared with those in normal HaCaT keratinocytes. In addition, induction of apoptosis in ex vivo CAP treated human tissue biopsies of patients with tumours of the head and neck was monitored and compared to healthy control tissue of the same patient. In response to CAP treatment, normal HaCaT keratinocytes differed significantly from their malignant counterpart HNO97 cells in cell motility only whereas cell viability remained similar. Moreover, CAP treatment of tumour tissue induced more apoptotic cells than in healthy tissue that was accompanied by elevated extracellular cytochrome c levels. This study promotes a future role of CAP as an adjuvant intraoperative tumour therapy option in the treatment of head and neck cancer. Moreover, patient-derived tissue explants complement in vitro examinations in a meaningful way to reflect an antitumoral role of CAP. © 2019 by the authors.
  • Item
    Medical Gas Plasma Treatment in Head and Neck Cancer—Challenges and Opportunities
    (Basel : MDPI, 2020) Berner, Julia; Seebauer, Christian; Sagwal, Sanjeev Kumar; Boeckmann, Lars; Emmert, Steffen; Metelmann, Hans-Robert; Bekeschus, Sander
    Despite progress in oncotherapy, cancer is still among the deadliest diseases in the Western world, emphasizing the demand for novel treatment avenues. Cold physical plasma has shown antitumor activity in experimental models of, e.g., glioblastoma, colorectal cancer, breast carcinoma, osteosarcoma, bladder cancer, and melanoma in vitro and in vivo. In addition, clinical case reports have demonstrated that physical plasma reduces the microbial contamination of severely infected tumor wounds and ulcerations, as is often seen with head and neck cancer patients. These antimicrobial and antitumor killing properties make physical plasma a promising tool for the treatment of head and neck cancer. Moreover, this type of cancer is easily accessible from the outside, facilitating the possibility of several rounds of topical gas plasma treatment of the same patient. Gas plasma treatment of head and neck cancer induces diverse effects via the deposition of a plethora of reactive oxygen and nitrogen species that mediate redox-biochemical processes, and ultimately, selective cancer cell death. The main advantage of medical gas plasma treatment in oncology is the lack of adverse events and significant side effects compared to other treatment modalities, such as surgical approaches, chemotherapeutics, and radiotherapy, making plasma treatment an attractive strategy for the adjuvant and palliative treatment of head and neck cancer. This review outlines the state of the art and progress in investigating physical plasma as a novel treatment modality in the therapy of head and neck squamous cell carcinoma.