Search Results

Now showing 1 - 6 of 6
  • Item
    Plasma treatment limits cutaneous squamous cell carcinoma development in vitro and in vivo
    (Basel : MDPI AG, 2020) Pasqual-Melo, Gabriella; Nascimento, Thiago; Sanches, Larissa Juliani; Blegniski, Fernanda Paschoal; Bianchi, Julya Karen; Sagwal, Sanjeev Kumar; Berner, Julia; Schmidt, Anke; Emmert, Steffen; Weltmann, Klaus-Dieter; Woedtke, Thomas von; Gandhirajan, Rajesh Kumar; Cecchini, Alessandra Lourenço; Bekeschus, Sander
    Cutaneous squamous cell carcinoma (SCC) is the most prevalent cancer worldwide, increasing the cost of healthcare services and with a high rate of morbidity. Its etiology is linked to chronic ultraviolet (UV) exposure that leads to malignant transformation of keratinocytes. Invasive growth and metastasis are severe consequences of this process. Therapy-resistant and highly aggressive SCC is frequently fatal, exemplifying the need for novel treatment strategies. Cold physical plasma is a partially ionized gas, expelling therapeutic doses of reactive oxygen and nitrogen species that were investigated for their anticancer capacity against SCC in vitro and SCC-like lesions in vivo. Using the kINPen argon plasma jet, a selective growth-reducing action of plasma treatment was identified in two SCC cell lines in 2D and 3D cultures. In vivo, plasma treatment limited the progression of UVB-induced SSC-like skin lesions and dermal degeneration without compromising lesional or non-lesional skin. In lesional tissue, this was associated with a decrease in cell proliferation and the antioxidant transcription factor Nrf2 following plasma treatment, while catalase expression was increased. Analysis of skin adjacent to the lesions and determination of global antioxidant parameters confirmed the local but not systemic action of the plasma anticancer therapy in vivo. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Short- and long-term polystyrene nano- and microplastic exposure promotes oxidative stress and divergently affects skin cell architecture and Wnt/beta-catenin signaling
    (London : BioMed Central, 2023) Schmidt, Anke; da Silva Brito, Walison Augusto; Singer, Debora; Mühl, Melissa; Berner, Julia; Saadati, Fariba; Wolff, Christina; Miebach, Lea; Wende, Kristian; Bekeschus, Sander
    Nano- and microplastic particles (NMP) are strong environmental contaminants affecting marine ecosystems and human health. The negligible use of biodegradable plastics and the lack of knowledge about plastic uptake, accumulation, and functional consequences led us to investigate the short- and long-term effects in freshly isolated skin cells from mice. Using fluorescent NMP of several sizes (200 nm to 6 µm), efficient cellular uptake was observed, causing, however, only minor acute toxicity as metabolic activity and apoptosis data suggested, albeit changes in intracellular reactive species and thiol levels were observed. The internalized NMP induced an altered expression of various targets of the nuclear factor-2-related transcription factor 2 pathway and were accompanied by changed antioxidant and oxidative stress signaling responses, as suggested by altered heme oxygenase 1 and glutathione peroxide 2 levels. A highly increased beta-catenin expression under acute but not chronic NMP exposure was concomitant with a strong translocation from membrane to the nucleus and subsequent transcription activation of Wnt signaling target genes after both single-dose and chronic long-term NMP exposure. Moreover, fibroblast-to-myofibroblast transdifferentiation accompanied by an increase of α smooth muscle actin and collagen expression was observed. Together with several NMP-induced changes in junctional and adherence protein expression, our study for the first time elucidates the acute and chronic effects of NMP of different sizes in primary skin cells' signaling and functional biology, contributing to a better understanding of nano- and microplastic to health risks in higher vertebrates.
  • Item
    Consequences of nano and microplastic exposure in rodent models: the known and unknown
    (London : BioMed Central, 2022) da Silva Brito, Walison Augusto; Mutter, Fiona; Wende, Kristian; Cecchini, Alessandra Lourenco; Schmidt, Anke; Bekeschus, Sander
    The ubiquitous nature of micro- (MP) and nanoplastics (NP) is a growing environmental concern. However, their potential impact on human health remains unknown. Research increasingly focused on using rodent models to understand the effects of exposure to individual plastic polymers. In vivo data showed critical exposure effects depending on particle size, polymer, shape, charge, concentration, and exposure routes. Those effects included local inflammation, oxidative stress, and metabolic disruption, leading to gastrointestinal toxicity, hepatotoxicity, reproduction disorders, and neurotoxic effects. This review distillates the current knowledge regarding rodent models exposed to MP and NP with different experimental designs assessing biodistribution, bioaccumulation, and biological responses. Rodents exposed to MP and NP showed particle accumulation in several tissues. Critical responses included local inflammation and oxidative stress, leading to microbiota dysbiosis, metabolic, hepatic, and reproductive disorders, and diseases exacerbation. Most studies used MP and NP commercially provided and doses higher than found in environmental exposure. Hence, standardized sampling techniques and improved characterization of environmental MP and NP are needed and may help in toxicity assessments of relevant particle mixtures, filling knowledge gaps in the literature.
  • Item
    Antioxidant Defense in Primary Murine Lung Cells following Short- and Long-Term Exposure to Plastic Particles
    (Basel : MDPI, 2023) Schmidt, Anke; Mühl, Melissa; Brito, Walison Augusto da Silva; Singer, Debora; Bekeschus, Sander
    Polystyrene nano- and micro-sized plastic particles (NMP) are one of the common plastic materials produced that dramatically pollute the environment, water, and oceanic habitats worldwide. NMP are continuously absorbed by the body through a number of routes, especially via intestinal ingestion, dermal uptake, and inhalation into the lung. Several studies provided evidence of NMP provoking oxidative stress and affecting cellular responses. Yet, the NMP effects on primary lung cells have not been studied. To this end, we isolated and cultured murine lung cells and exposed them short-term or long-term to polystyrene 0.2–6.0 µm-sized NMP. We studied cellular consequences regarding oxidative stress, morphology, and secretion profiling. Visualization, distribution, and expression analyses confirmed lung cells accumulating NMP and showed several significant correlations with particle size. Moreover, we found substantial evidence of biological consequences of small-scale NMP uptake in lung cells. Besides alterations of cytokine secretion profiles resulting in inflammatory responses, indicators of oxidative stress were identified that were accompanied by Nrf2 and β-catenin signaling changes. Our results serve as an important basis to point out the potential hazards of plastic contaminations and uptake in lung cells.
  • Item
    The molecular and physiological consequences of cold plasma treatment in murine skin and its barrier function
    (New York, NY [u.a.] : Elsevier, 2020) Schmidt, Anke; Liebelt, Grit; Striesow, Johanna; Freund, Eric; Woedtke, Thomas von; Wende, Kristian; Bekeschus, Sander
    Cold plasma technology is an emerging tool facilitating the spatially controlled delivery of a multitude of reactive species (ROS) to the skin. While the therapeutic efficacy of plasma treatment has been observed in several types of diseases, the fundamental consequences of plasma-derived ROS on skin physiology remain unknown. We aimed to bridge this gap since the epidermal skin barrier and perfusion plays a vital role in health and disease by maintaining homeostasis and protecting from environmental damage. The intact skin of SKH1 mice was plasma-treated in vivo. Gene and protein expression was analyzed utilizing transcriptomics, qPCR, and Western blot. Immunofluorescence aided the analysis of percutaneous skin penetration of curcumin. Tissue oxygenation, perfusion, hemoglobin, and water index was investigated using hyperspectral imaging. Reversed-phase liquid-chromatography/mass spectrometry was performed for the identification of changes in the lipid composition and oxidation. Transcriptomic analysis of plasma-treated skin revealed modulation of genes involved in regulating the junctional network (tight, adherence, and gap junctions), which was confirmed using qPCR, Western blot, and immunofluorescence imaging. Plasma treatment increased the disaggregation of cells in the stratum corneum (SC) concomitant with increased tissue oxygenation, gap junctional intercellular communication, and penetration of the model drug curcumin into the SC preceded by altered oxidation of skin lipids and their composition in vivo. In summary, plasma-derived ROS modify the junctional network, which promoted tissue oxygenation, oxidation of SC-lipids, and restricted penetration of the model drug curcumin, implicating that plasma may provide a novel and sensitive tool of skin barrier regulation. © 2020 The Author(s)
  • Item
    Hyperspectral Imaging of Wounds Reveals Augmented Tissue Oxygenation following Cold Physical Plasma Treatment in Vivo
    (New York, NY : IEEE, 2021) Schmidt, Anke; Niesner, Felix; von Woedtke, Thomas; Bekeschus, Sander
    Efficient vascularization of skin tissue supports wound healing in response to injury. This includes elevated blood circulation, tissue oxygenation, and perfusion. Cold physical plasma promotes wound healing in animal models and humans. Physical plasmas are multicomponent systems that generate several physicochemical effectors, such as ions, electrons, reactive oxygen and nitrogen species, and UV radiation. However, the consequences of plasma treatment on wound oxygenation and perfusion, vital processes to promote tissue regeneration, are largely unexplored. We used a novel hyperspectral imaging (HSI) system and a murine dermal full-thickness wound model in combination with kINPen argon plasma jet treatment to address this question. Plasma treatment promoted tissue oxygenation in superficial as well as deep (6 mm) layers of wound tissue. In addition to perfusion changes, we found a wound healing stage-dependent shift of tissue hemoglobin and tissue water index during reactive species-driven wound healing. Contactless, fast monitoring of medical parameters in real-time using HSI revealed a plasma-supporting effect in wound healing together with precise information about biological surface-specific features.