Search Results

Now showing 1 - 10 of 25
  • Item
    Tumor cytotoxicity and immunogenicity of a novel V-jet neon plasma source compared to the kINPen
    (London : Nature Publishing Group, 2021) Miebach, Lea; Freund, Eric; Horn, Stefan; Niessner, Felix; Sagwal, Sanjeev Kumar; von Woedtke, Thomas; Emmert, Steffen; Weltmann, Klaus-Dieter; Clemen, Ramona; Schmidt, Anke; Gerling, Torsten; Bekeschus, Sander
    Recent research indicated the potential of cold physical plasma in cancer therapy. The plethora of plasma-derived reactive oxygen and nitrogen species (ROS/RNS) mediate diverse antitumor effects after eliciting oxidative stress in cancer cells. We aimed at exploiting this principle using a newly designed dual-jet neon plasma source (Vjet) to treat colorectal cancer cells. A treatment time-dependent ROS/RNS generation induced oxidation, growth retardation, and cell death within 3D tumor spheroids were found. In TUM-CAM, a semi in vivo model, the Vjet markedly reduced vascularized tumors' growth, but an increase of tumor cell immunogenicity or uptake by dendritic cells was not observed. By comparison, the argon-driven single jet kINPen, known to mediate anticancer effects in vitro, in vivo, and in patients, generated less ROS/RNS and terminal cell death in spheroids. In the TUM-CAM model, however, the kINPen was equivalently effective and induced a stronger expression of immunogenic cancer cell death (ICD) markers, leading to increased phagocytosis of kINPen but not Vjet plasma-treated tumor cells by dendritic cells. Moreover, the Vjet was characterized according to the requirements of the DIN-SPEC 91315. Our results highlight the plasma device-specific action on cancer cells for evaluating optimal discharges for plasma cancer treatment.
  • Item
    Medical gas plasma-stimulated wound healing: Evidence and mechanisms
    (Amsterdam [u.a.] : Elsevier, 2021) Bekeschus, Sander; von Woedtke, Thomas; Emmert, Steffen; Schmidt, Anke
    Defective wound healing poses a significant burden on patients and healthcare systems. In recent years, a novel reactive oxygen and nitrogen species (ROS/RNS) based therapy has received considerable attention among dermatologists for targeting chronic wounds. The multifaceted ROS/RNS are generated using gas plasma technology, a partially ionized gas operated at body temperature. This review integrates preclinical and clinical evidence into a set of working hypotheses mainly based on redox processes aiding in elucidating the mechanisms of action and optimizing gas plasmas for therapeutic purposes. These hypotheses include increased wound tissue oxygenation and vascularization, amplified apoptosis of senescent cells, redox signaling, and augmented microbial inactivation. Instead of a dominant role of a single effector, it is proposed that all mechanisms act in concert in gas plasma-stimulated healing, rationalizing the use of this technology in therapy-resistant wounds. Finally, addressable current challenges and future concepts are outlined, which may further promote the clinical utilization, efficacy, and safety of gas plasma technology in wound care in the future.
  • Item
    Reactive species driven oxidative modifications of peptides—Tracing physical plasma liquid chemistry
    (Melville, NY : American Inst. of Physics, 2021) Wenske, Sebastian; Lackmann, Jan-Wilm; Busch, Larissa Milena; Bekeschus, Sander; von Woedtke, Thomas; Wende, Kristian
    The effluence of physical plasma consists of a significant share of reactive species, which may interact with biomolecules and yield chemical modifications comparable to those of physiological processes, e.g., post-translational protein modifications (oxPTMs). Consequentially, the aim of this work is to understand the role of physical plasma-derived reactive species in the introduction of oxPTM-like modifications in proteins. An artificial peptide library consisting of ten peptides was screened against the impact of two plasma sources, the argon-driven MHz-jet kINPen and the helium-driven RF-jet COST-Jet. Changes in the peptide molecular structure were analyzed by liquid chromatography–mass spectrometry. The amino acids cysteine, methionine, tyrosine, and tryptophan were identified as major targets. The introduction of one, two, or three oxygen atoms was the most common modification observed. Distinct modification patterns were observed for nitration (+N + 2O–H), which occurred in kINPen only (peroxynitrite), and chlorination (+Cl–H) that was exclusive for the COST-Jet in the presence of chloride ions (atomic oxygen/hypochlorite). Predominantly for the kINPen, singlet oxygen-related modifications, e.g., cleavage of tryptophan, were observed. Oxidation, carbonylation, and double oxidations were attributed to the impact of hydroxyl radicals and atomic oxygen. Leading to a significant change in the peptide side chain, most of these oxPTM-like modifications affect the secondary structure of amino acid chains, and amino acid polarity/functionality, ultimately modifying the performance and stability of cellular proteins.
  • Item
    Combination of Gas Plasma and Radiotherapy Has Immunostimulatory Potential and Additive Toxicity in Murine Melanoma Cells In Vitro
    (Basel : Molecular Diversity Preservation International, 2020) Pasqual-Melo, Gabriella; Sagwal, Sanjeev Kumar; Freund, Eric; Gandhirajan, Rajesh Kumar; Frey, Benjamin; von Woedtke, Thomas; Gaipl, Udo; Bekeschus, Sander
    Despite continuous advances in therapy, malignant melanoma is still among the deadliest types of cancer. At the same time, owing to its high plasticity and immunogenicity, melanoma is regarded as a model tumor entity when testing new treatment approaches. Cold physical plasma is a novel anticancer tool that utilizes a plethora of reactive oxygen species (ROS) being deposited on the target cells and tissues. To test whether plasma treatment would enhance the toxicity of an established antitumor therapy, ionizing radiation, we combined both physical treatment modalities targeting B16F10 murine melanoma cell in vitro. Repeated rather than single radiotherapy, in combination with gas plasma-introduced ROS, induced apoptosis and cell cycle arrest in an additive fashion. In tendency, gas plasma treatment sensitized the cells to subsequent radiotherapy rather than the other way around. This was concomitant with increased levels of TNFa, IL6, and GM-CSF in supernatants. Murine JAWS dendritic cells cultured in these supernatants showed an increased expression of cell surface activation markers, such as MHCII and CD83. For PD-L1 and PD-L2, increased expression was observed. Our results are the first to suggest an additive therapeutic effect of gas plasma and radiotherapy, and translational tumor models are needed to develop this concept further. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    On a heavy path – determining cold plasma-derived short-lived species chemistry using isotopic labelling
    (London : RSC Publishing, 2020) Wende, Kristian; Bruno, Giuliana; Lalk, Michael; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Bekeschus, Sander; Lackmann, Jan-Wilm
    Cold atmospheric plasmas (CAPs) are promising medical tools and are currently applied in dermatology and epithelial cancers. While understanding of the biomedical effects is already substantial, knowledge on the contribution of individual ROS and RNS and the mode of activation of biochemical pathways is insufficient. Especially the formation and transport of short-lived reactive species in liquids remain elusive, a situation shared with other approaches involving redox processes such as photodynamic therapy. Here, the contribution of plasma-generated reactive oxygen species (ROS) in plasma liquid chemistry was determined by labeling these via admixing heavy oxygen 18O2 to the feed gas or by using heavy water H218O as a solvent for the bait molecule. The inclusion of heavy or light oxygen atoms by the labeled ROS into the different cysteine products was determined by mass spectrometry. While products like cysteine sulfonic acid incorporated nearly exclusively gas phase-derived oxygen species (atomic oxygen and/or singlet oxygen), a significant contribution of liquid phase-derived species (OH radicals) was observed for cysteine-S-sulfonate. The role, origin, and reaction mechanisms of short-lived species, namely hydroxyl radicals, singlet oxygen, and atomic oxygen, are discussed. Interactions of these species both with the target cysteine molecule as well as the interphase and the liquid bulk are taken into consideration to shed light onto several reaction pathways resulting in observed isotopic oxygen incorporation. These studies give valuable insight into underlying plasma–liquid interaction processes and are a first step to understand these interaction processes between the gas and liquid phase on a molecular level.
  • Item
    Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma
    (Austin, Tex. : Landes Bioscience, 2015) Bekeschus, Sander; Schmidt, Anke; Bethge, Lydia; Masur, Kai; von Woedtke, Thomas; Hasse, Sybille; Wende, Kristian
    In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α), differentiation (retinoic acid signaling and interferon inducible factors), and cell growth (Yin Yang 1). Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1) and of the neutrophil attractant chemokine interleukin-8 (IL-8). Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.
  • Item
    Non-thermal plasma-treated solution demonstrates antitumor activity against pancreatic cancer cells in vitro and in vivo
    ([London] : Macmillan Publishers Limited, 2017) Liedtke, Kim Rouven; Bekeschus, Sander; Kaeding, André; Hackbarth, Christine; Kuehn, Jens-Peter; Heidecke, Claus-Dieter; von Bernstorff, Wolfram; von Woedtke, Thomas; Partecke, Lars Ivo
    Pancreatic cancer is associated with a high mortality rate. In advanced stage, patients often experience peritoneal carcinomatosis. Using a syngeneic murine pancreatic cancer cell tumor model, the effect of non-thermal plasma (NTP) on peritoneal metastatic lesions was studied. NTP generates reactive species of several kinds which have been proven to be of relevance in cancer. In vitro, exposure to both plasma and plasma-treated solution significantly decreased cell viability and proliferation of 6606PDA cancer cells, whereas mouse fibroblasts were less affected. Repeated intraperitoneal treatment of NTP-conditioned medium decreased tumor growth in vivo as determined by magnetic resonance imaging, leading to reduced tumor mass and improved median survival (61 vs 52 days; p < 0.024). Tumor nodes treated by NTP-conditioned medium demonstrated large areas of apoptosis with strongly inhibited cell proliferation. Contemporaneously, no systemic effects were found. Apoptosis was neither present in the liver nor in the gut. Also, the concentration of different cytokines in splenocytes or blood plasma as well as the distribution of various hematological parameters remained unchanged following treatment with NTP-conditioned medium. These results suggest an anticancer role of NTP-treated solutions with little to no systemic side effects being present, making NTP-treated solutions a potential complementary therapeutic option for advanced tumors.
  • Item
    Oral SARS-CoV-2 reduction by local treatment: A plasma technology application?
    (Weinheim : Wiley-VCH, 2022) von Woedtke, Thomas; Gabriel, Gülsah; Schaible, Ulrich E.; Bekeschus, Sander
    The SARS-CoV-2 pandemic reemphasized the importance of and need for efficient hygiene and disinfection measures. The coronavirus' efficient spread capitalizes on its airborne transmission routes via virus aerosol release from human oral and nasopharyngeal cavities. Besides the upper respiratory tract, efficient viral replication has been described in the epithelium of these two body cavities. To this end, the idea emerged to employ plasma technology to locally reduce mucosal viral loads as an additional measure to reduce patient infectivity. We here outline conceptual ideas of such treatment concepts within what is known in the antiviral actions of plasma treatment so far.
  • Item
    Argon Plasma Exposure Augments Costimulatory Ligands and Cytokine Release in Human Monocyte-Derived Dendritic Cells
    (Basel : Molecular Diversity Preservation International (MDPI), 2021) Bekeschus, Sander; Meyer, Dorothee; Arlt, Kevin; von Woedtke, Thomas; Miebach, Lea; Freund, Eric; Clemen, Ramona
    Cold physical plasma is a partially ionized gas expelling many reactive oxygen and nitrogen species (ROS/RNS). Several plasma devices have been licensed for medical use in dermatology, and recent experimental studies suggest their putative role in cancer treatment. In cancer therapies with an immunological dimension, successful antigen presentation and inflammation modulation is a key hallmark to elicit antitumor immunity. Dendritic cells (DCs) are critical for this task. However, the inflammatory consequences of DCs following plasma exposure are unknown. To this end, human monocyte-derived DCs (moDCs) were expanded from isolated human primary monocytes; exposed to plasma; and their metabolic activity, surface marker expression, and cytokine profiles were analyzed. As controls, hydrogen peroxide, hypochlorous acid, and peroxynitrite were used. Among all types of ROS/RNS-mediated treatments, plasma exposure exerted the most notable increase of activation markers at 24 h such as CD25, CD40, and CD83 known to be crucial for T cell costimulation. Moreover, the treatments increased interleukin (IL)-1α, IL-6, and IL-23. Altogether, this study suggests plasma treatment augmenting costimulatory ligand and cytokine expression in human moDCs, which might exert beneficial effects in the tumor microenvironment.
  • Item
    White paper on plasma for medicine and hygiene: Future in plasma health sciences
    (Hoboken, NJ : Wiley Interscience, 2019) Bekeschus, Sander; Favia, Pietro; Robert, Eric; von Woedtke, Thomas
    Plasma Science and Technology offer their valuable contribution to human health since more than 50 years, after decades of experiences in the field of biomaterials; and more than a decade in using plasmas for therapeutic uses in medicine. Current knowledge as well as key challenges and opportunities for the human health have been intensely discussed during the Future in Plasma Science II (FIPS II) workshop in February 2016 in Greifswald, Germany. This contribution summarizes the major outcomes of the meeting and the current literature and consensus with an emphasis on major challenges in the fields of Plasma Science and Technology for improving human health.