Search Results

Now showing 1 - 10 of 21
  • Item
    Cold atmospheric plasma is a potent tool to improve chemotherapy in melanoma in vitro and in vivo
    (Basel : MDPI, 2020) Alimohammadi, Mina; Golpour, Monireh; Sohbatzadeh, Farshad; Hadavi, Seyedehniaz; Bekeschus, Sander; Niaki, Haleh Akhavan; Valadan, Reza; Rafiei, Alireza
    Malignant melanoma is a devastating disease. Because of its aggressiveness, it also serves as a model tumor for investigating novel therapeutic avenues. In recent years, scientific evidence has shown that cold atmospheric plasma (CAP) might be a promising modality in cancer therapy. In this study, we aimed to evaluate the effect of CAP generated by an argon plasma jet alone or in combination with dacarbazine (DAC) on melanoma cells in vitro and in vivo. The effects of the CAP on inducing lipid peroxidation and nitric oxide production were higher in B16 melanoma cells in comparison to non-malignant L929 cells. Assays on cell growth, apoptosis, and expression of genes related to, e.g., autophagic processes, showed CAP to have a substantial impact in melanoma cells while there were only minoreffects in L929 cells. In vivo, both CAP monotherapy and combination with DAC significantly decreased tumor growth. These results suggest that CAP not only selectively induces cell death in melanoma but also holds promises in combination with chemotherapy that might lead to improved tumor control. © 2020 by the authors.
  • Item
    Murine Macrophages Modulate Their Inflammatory Profile in Response to Gas Plasma-Inactivated Pancreatic Cancer Cells
    (Basel : MDPI, 2021) Khabipov, Aydar; Freund, Eric; Liedtke, Kim Rouven; Käding, Andre; Riese, Janik; van der Linde, Julia; Kersting, Stephan; Partecke, Lars-Ivo; Bekeschus, Sander
    Macrophages and immuno-modulation play a dominant role in the pathology of pancreatic cancer. Gas plasma is a technology recently suggested to demonstrate anticancer efficacy. To this end, two murine cell lines were employed to analyze the inflammatory consequences of plasma-treated pancreatic cancer cells (PDA) on macrophages using the kINPen plasma jet. Plasma treatment decreased the metabolic activity, viability, and migratory activity in an ROS- and treatment time-dependent manner in PDA cells in vitro. These results were confirmed in pancreatic tumors grown on chicken embryos in the TUM-CAM model (in ovo). PDA cells promote tumor-supporting M2 macrophage polarization and cluster formation. Plasma treatment of PDA cells abrogated this cluster formation with a mixed M1/M2 phenotype observed in such co-cultured macrophages. Multiplex chemokine and cytokine quantification showed a marked decrease of the neutrophil chemoattractant CXCL1, IL6, and the tumor growth supporting TGFβ and VEGF in plasma-treated compared to untreated co-culture settings. At the same time, macrophage-attractant CCL4 and MCP1 release were profoundly enhanced. These cellular and secretome data suggest that the plasma-inactivated PDA6606 cells modulate the inflammatory profile of murine RAW 264.7 macrophages favorably, which may support plasma cancer therapy.
  • Item
    Therapeutic ROS and Immunity in Cancer-The TRIC-21 Meeting
    (Basel : MDPI, 2021) Bekeschus, Sander; Emmert, Steffen; Clemen, Ramona; Boeckmann, Lars
    The first Therapeutic ROS and Immunity in Cancer (TRIC) meeting was organized by the excellence research center ZIK plasmatis (with its previous Frontiers in Redox Biochemistry and Medicine (FiRBaM) and Young Professionals' Workshop in Plasma Medicine (YPWPM) workshop series in Northern Germany) and the excellence research program ONKOTHER-H (Rostock/Greifswald, Germany). The meeting showcased cutting-edge research and liberated discussions on the application of therapeutic ROS and immunology in cancer treatment, primarily focusing on gas plasma technology. The 2-day hybrid meeting took place in Greifswald and online from 15-16 July 2021, facilitating a wide range of participants totaling 66 scientists from 12 countries and 5 continents. The meeting aimed at bringing together researchers from a variety of disciplines, including chemists, biochemists, biologists, engineers, immunologists, physicists, and physicians for interdisciplinary discussions on using therapeutic ROS and medical gas plasma technology in cancer therapy with the four main sessions: "Plasma, Cancer, Immunity", "Plasma combination therapies", "Plasma risk assessment and patients studies", and "Plasma mechanisms and treated liquids in cancer". This conference report outlines the abstracts of attending scientists submitted to this meeting.
  • Item
    Small Molecules in the Treatment of Squamous Cell Carcinomas: Focus on Indirubins
    (Basel : MDPI, 2021) Schäfer, Mirijam; Semmler, Marie Luise; Bernhardt, Thoralf; Fischer, Tobias; Kakkassery, Vinodh; Ramer, Robert; Hein, Martin; Bekeschus, Sander; Langer, Peter; Hinz, Burkhard; Emmert, Steffen; Boeckmann, Lars
    Skin cancers are the most common malignancies in the world. Among the most frequent skin cancer entities, squamous cell carcinoma (SCC) ranks second (~20%) after basal cell carcinoma (~77%). In early stages, a complete surgical removal of the affected tissue is carried out as standard therapy. To treat advanced and metastatic cancers, targeted therapies with small molecule inhibitors are gaining increasing attention. Small molecules are a heterogeneous group of protein regulators, which are produced by chemical synthesis or fermentation. The majority of them belong to the group of receptor tyrosine kinase inhibitors (RTKIs), which specifically bind to certain RTKs and directly influence the respective signaling pathway. Knowledge of characteristic molecular alterations in certain cancer entities, such as SCC, can help identify tumor-specific substances for targeted therapies. Most frequently, altered genes in SCC include TP53, NOTCH, EGFR, and CCND1. For example, the gene CCND1, which codes for cyclin D1 protein, is upregulated in nearly half of SCC cases and promotes proliferation of affected cells. A treatment with the small molecule 5'-nitroindirubin-monoxime (INO) leads to inhibition of cyclin D1 and thus inhibition of proliferation. As a component of Danggui Longhui Wan, a traditional Chinese medicine, indirubins are used to treat chronic diseases and have been shown to inhibit inflammatory reactions. Indirubins are pharmacologically relevant small molecules with proapoptotic and antiproliferative activity. In this review, we discuss the current literature on indirubin-based small molecules in cancer treatment. A special focus is on the molecular biology of squamous cell carcinomas, their alterations, and how these are rendered susceptible to indirubin-based small molecule inhibitors. The potential molecular mechanisms of the efficacy of indirubins in killing SCC cells will be discussed as well.
  • Item
    Plasma-Treated Solutions (PTS) in Cancer Therapy
    (Basel : MDPI, 2021) Tanaka, Hiromasa; Bekeschus, Sander; Yan, Dayun; Hori, Masaru; Keidar, Michael; Laroussi, Mounir
    Cold physical plasma is a partially ionized gas generating various reactive oxygen and nitrogen species (ROS/RNS) simultaneously. ROS/RNS have therapeutic effects when applied to cells and tissues either directly from the plasma or via exposure to solutions that have been treated beforehand using plasma processes. This review addresses the challenges and opportunities of plasma-treated solutions (PTSs) for cancer treatment. These PTSs include plasma-treated cell culture media in experimental research as well as clinically approved solutions such as saline and Ringer’s lactate, which, in principle, already qualify for testing in therapeutic settings. Several types of cancers were found to succumb to the toxic action of PTSs, suggesting a broad mechanism of action based on the tumor-toxic activity of ROS/RNS stored in these solutions. Moreover, it is indi-cated that the PTS has immuno-stimulatory properties. Two different routes of application are cur-rently envisaged in the clinical setting. One is direct injection into the bulk tumor, and the other is lavage in patients suffering from peritoneal carcinomatosis adjuvant to standard chemotherapy. While many promising results have been achieved so far, several obstacles, such as the standardized generation of large volumes of sterile PTS, remain to be addressed. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Multimodal imaging techniques to evaluate the anticancer effect of cold atmospheric pressure plasma
    (Basel : MDPI, 2021) Kordt, Marcel; Trautmann, Isabell; Schlie, Christin; Lindner, Tobias; Stenzel, Jan; Schildt, Anna; Boeckmann, Lars; Bekeschus, Sander; Kurth, Jens; Krause, Bernd J.; Vollmar, Brigitte; Grambow, Eberhard
    Background: Skin cancer is the most frequent cancer worldwide and is divided into non-melanoma skin cancer, including basal cell carcinoma, as well as squamous cell carcinoma (SCC) and malignant melanoma (MM). Methods: This study evaluates the effects of cold atmospheric pressure plasma (CAP) on SCC and MM in vivo, employing a comprehensive approach using multi-modal imaging techniques. Longitudinal MR and PET/CT imaging were performed to determine the anatomic and metabolic tumour volume over three‐weeks in vivo. Additionally, the formation of reactive species after CAP treatment was assessed by non‐invasive chemiluminescence imaging of L‐012. Histological analysis and immunohistochemical staining for Ki‐67, ApopTag®, F4/80, CAE, and CD31, as well as protein expression of PCNA, caspase‐3 and cleaved‐caspase‐3, were performed to study proliferation, apoptosis, inflammation, and angiogenesis in CAP‐treated tumours. Results: As the main result, multimodal in vivo imaging revealed a substantial reduction in tumour growth and an increase in reactive species after CAP treatment, in comparison to untreated tu-mours. In contrast, neither the markers for apoptosis, nor the metabolic activity of both tumour entities was affected by CAP. Conclusions: These findings propose CAP as a potential adjuvant therapy option to established standard therapies of skin cancer.
  • Item
    In Vitro Examinations of Cell Death Induction and the Immune Phenotype of Cancer Cells Following Radiative-Based Hyperthermia with 915 MHz in Combination with Radiotherapy
    (Basel : MDPI, 2021) Hader, Michael; Streit, Simon; Rosin, Andreas; Gerdes, Thorsten; Wadepohl, Martin; Bekeschus, Sander; Fietkau, Rainer; Frey, Benjamin; Schlücker, Eberhard; Gekle, Stephan; Gaipl, Udo S.
    Multimodal tumor treatment settings consisting of radiotherapy and immunomodulating agents such as immune checkpoint inhibitors are more and more commonly applied in clinics. In this context, the immune phenotype of tumor cells has a major influence on the anti-tumor immune response as well as the composition of the tumor microenvironment. A promising approach to further boost anti-tumor immune responses is to add hyperthermia (HT), i.e., heating the tumor tissue between 39 °C to 45 °C for 60 min. One key technique is the use of radiative hyperthermia systems. However, knowledge is limited as to how the frequency of the used radiative systems affects the immune phenotype of the treated tumor cells. By using our self-designed in vitro hyperthermia system, we compared cell death induction and expression of immune checkpoint molecules (ICM) on the tumor cell surface of murine B16 melanoma and human MDA-MB-231 and MCF-7 breast cancer cells following HT treatment with clinically relevant microwaves at 915 MHz or 2.45 GHz alone, radiotherapy (RT; 2 × 5 Gy or 5 × 2 Gy) alone or in combination (RHT). At 44 °C, HT alone was the dominant cell death inductor with inactivation rates of around 70% for B16, 45% for MDA-MB-231 and 35% for MCF-7 at 915 MHz and 80%, 60% and 50% at 2.45 GHz, respectively. Additional RT resulted in 5-15% higher levels of dead cells. The expression of ICM on tumor cells showed time-, treatment-, cell line- and frequency-dependent effects and was highest for RHT. Computer simulations of an exemplary spherical cell revealed frequency-dependent local energy absorption. The frequency of hyperthermia systems is a newly identified parameter that could also affect the immune phenotype of tumor cells and consequently the immunogenicity of tumors.
  • Item
    Gas Plasma-Augmented Wound Healing in Animal Models and Veterinary Medicine
    (Basel : MDPI, 2021) Bekeschus, Sander; Kramer, Axel; Schmidt, Anke
    The loss of skin integrity is inevitable in life. Wound healing is a necessary sequence of events to reconstitute the body’s integrity against potentially harmful environmental agents and restore homeostasis. Attempts to improve cutaneous wound healing are therefore as old as humanity itself. Furthermore, nowadays, targeting defective wound healing is of utmost importance in an aging society with underlying diseases such as diabetes and vascular insufficiencies being on the rise. Because chronic wounds’ etiology and specific traits differ, there is widespread polypragmasia in targeting non-healing conditions. Reactive oxygen and nitrogen species (ROS/RNS) are an overarching theme accompanying wound healing and its biological stages. ROS are signaling agents generated by phagocytes to inactivate pathogens. Although ROS/RNS’s central role in the biology of wound healing has long been appreciated, it was only until the recent decade that these agents were explicitly used to target defective wound healing using gas plasma technology. Gas plasma is a physical state of matter and is a partially ionized gas operated at body temperature which generates a plethora of ROS/RNS simultaneously in a spatiotemporally controlled manner. Animal models of wound healing have been vital in driving the development of these wound healing-promoting technologies, and this review summarizes the current knowledge and identifies open ends derived from in vivo wound models under gas plasma therapy. While gas plasma-assisted wound healing in humans has become well established in Europe, veterinary medicine is an emerging field with great potential to improve the lives of suffering animals.
  • Item
    Combined toxicity of gas plasma treatment and nanoparticles exposure in melanoma cells in vitro
    (Basel : MDPI, 2021) Bekeschus, Sander
    Despite continuous advances in therapy, cancer remains a deadly disease. Over the past years, gas plasma technology emerged as a novel tool to target tumors, especially skin. Another promising anticancer approach are nanoparticles. Since combination therapies are becoming increas-ingly relevant in oncology, both gas plasma treatment and nanoparticle exposure were combined. A series of nanoparticles were investigated in parallel, namely, silica, silver, iron oxide, cerium oxide, titanium oxide, and iron-doped titanium oxide. For gas plasma treatment, the atmospheric pressure argon plasma jet kINPen was utilized. Using three melanoma cell lines, the two murine non-metastatic B16F0 and metastatic B16F10 cells and the human metastatic B-Raf mutant cell line SK-MEL-28, the combined cytotoxicity of both approaches was identified. The combined cytotoxicity of gas plasma treatment and nanoparticle exposure was consistent across all three cell lines for silica, silver, iron oxide, and cerium oxide. In contrast, for titanium oxide and iron-doped titanium oxide, significantly combined cytotoxicity was only observed in B16F10 cells.
  • Item
    Plasma‐treated flammulina velutipes‐derived extract showed anticancer potential in human breast cancer cells
    (Basel : MDPI, 2020) Mitra, Sarmistha; Bhartiya, Pradeep; Kaushik, Neha; Nguyen, Linh Nhat; Wahab, Rizwan; Bekeschus, Sander; Choi, Eun Ha; Kaushik, Nagendra Kumar
    Natural products with medicinal properties are among alternative therapies of interest due to their high body tolerance. We aimed to determine whether nonthermal gas plasma could enhance the medicinal value of Flammulina velutipes mushrooms. Generated gas plasma was characterized by its emission spectrum in ambient air, pH, temperature, and H2O2 and NOx concentrations after exposure for various periods. Phenolic and flavonoid contents in the extracts were measured using antioxidant assays and Fourier transform infrared and ultraviolet‐visible spectroscopy. We analyzed the effects of the plasma‐treated mushroom‐derived extracts against breast carcinoma using the MCF7 and MDA‐MB231 cell lines. The extracts significantly and concentration dependently inhibited the growth of breast cancer cells without inducing toxicity in normal MCF10A cells, and induced apoptosis via oxidative stress, evidenced by DNA damage (γ‐ H2AX foci formation), and increased the population of MCF7 breast cancer cells arrested in the G2/M phase of the cell cycle. The extracts also induced mitochondrion‐mediated apoptosis of MCF7 cells through cytochrome c release and caspase cleavage activity. The plasma improved the biological activity of mushrooms by increasing their phenolic compounds that prevented the growth of breast cancer cells in vitro. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.