Search Results

Now showing 1 - 10 of 42
  • Item
    Conductive Gas Plasma Treatment Augments Tumor Toxicity of Ringer’s Lactate Solutions in a Model of Peritoneal Carcinomatosis
    (Basel : MDPI, 2022) Miebach, Lea; Freund, Eric; Cecchini, Alessandra Lourenço; Bekeschus, Sander
    Reactive species generated by medical gas plasma technology can be enriched in liquids for use in oncology targeting disseminated malignancies, such as metastatic colorectal cancer. Notwithstanding, reactive species quantities depend on the treatment mode, and we recently showed gas plasma exposure in conductive modes to be superior for cancer tissue treatment. However, evidence is lacking that such a conductive mode also equips gas plasma-treated liquids to confer augmented intraperitoneal anticancer activity. To this end, employing atmospheric pressure argon plasma jet kINPen-treated Ringer’s lactate (oxRilac) in a CT26-model of colorectal peritoneal carcinomatosis, we tested repeated intraabdominal injection of such remotely or conductively oxidized liquid for antitumor control and immunomodulation. Enhanced reactive species formation in conductive mode correlated with reduced tumor burden in vivo, emphasizing the advantage of conduction over the free mode for plasma-conditioned liquids. Interestingly, the infiltration of lymphocytes into the tumors was equally enhanced by both treatments. However, significantly lower levels of interleukin (IL)4 and IL13 and increased levels of IL2 argue for a shift in intratumoral T-helper cell subpopulations correlating with disease control. In conclusion, our data argue for using conductively over remotely prepared plasma-treated liquids for anticancer treatment.
  • Item
    Combined In Vitro Toxicity and Immunogenicity of Cold Plasma and Pulsed Electric Fields
    (Basel : MDPI, 2022) Wolff, Christina M.; Kolb, Juergen F.; Bekeschus, Sander
    In modern oncology, therapies are based on combining monotherapies to overcome treatment resistance and increase therapy precision. The application of microsecond-pulsed electric fields (PEF) is approved to enhance local chemotherapeutic drug uptake within combination electrochemotherapy regimens. Reactive oxygen species (ROS) have been implicated in anticancer effects, and cold physical plasma produces vast amounts of ROS, which have recently been shown to benefit head and neck cancer patients. PEF and cold plasma technology have been linked to immunogenic cell death (ICD) induction, a regulated cell death accompanied by sterile inflammation that promotes antitumor immunity. To this end, we investigated the combined effect of both treatments regarding their intracellular ROS accumulation, toxicity, ICD-related marker expression, and optimal exposure sequence in a leukemia model cell line. The combination treatment substantially increased ROS and intracellular glutathione levels, leading to additive cytotoxic effects accompanied by a significantly increased expression of ICD markers, such as the eat-me signal calreticulin (CRT). Preconditioned treatment with cold plasma followed by PEF exposure was the most potent treatment sequence. The results indicate additive effects of cold plasma and PEF, motivating further studies in skin and breast tumor models for the future improvement of ECT in such patients.
  • Item
    Plasma treatment limits cutaneous squamous cell carcinoma development in vitro and in vivo
    (Basel : MDPI AG, 2020) Pasqual-Melo, Gabriella; Nascimento, Thiago; Sanches, Larissa Juliani; Blegniski, Fernanda Paschoal; Bianchi, Julya Karen; Sagwal, Sanjeev Kumar; Berner, Julia; Schmidt, Anke; Emmert, Steffen; Weltmann, Klaus-Dieter; Woedtke, Thomas von; Gandhirajan, Rajesh Kumar; Cecchini, Alessandra Lourenço; Bekeschus, Sander
    Cutaneous squamous cell carcinoma (SCC) is the most prevalent cancer worldwide, increasing the cost of healthcare services and with a high rate of morbidity. Its etiology is linked to chronic ultraviolet (UV) exposure that leads to malignant transformation of keratinocytes. Invasive growth and metastasis are severe consequences of this process. Therapy-resistant and highly aggressive SCC is frequently fatal, exemplifying the need for novel treatment strategies. Cold physical plasma is a partially ionized gas, expelling therapeutic doses of reactive oxygen and nitrogen species that were investigated for their anticancer capacity against SCC in vitro and SCC-like lesions in vivo. Using the kINPen argon plasma jet, a selective growth-reducing action of plasma treatment was identified in two SCC cell lines in 2D and 3D cultures. In vivo, plasma treatment limited the progression of UVB-induced SSC-like skin lesions and dermal degeneration without compromising lesional or non-lesional skin. In lesional tissue, this was associated with a decrease in cell proliferation and the antioxidant transcription factor Nrf2 following plasma treatment, while catalase expression was increased. Analysis of skin adjacent to the lesions and determination of global antioxidant parameters confirmed the local but not systemic action of the plasma anticancer therapy in vivo. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Murine Macrophages Modulate Their Inflammatory Profile in Response to Gas Plasma-Inactivated Pancreatic Cancer Cells
    (Basel : MDPI, 2021) Khabipov, Aydar; Freund, Eric; Liedtke, Kim Rouven; Käding, Andre; Riese, Janik; van der Linde, Julia; Kersting, Stephan; Partecke, Lars-Ivo; Bekeschus, Sander
    Macrophages and immuno-modulation play a dominant role in the pathology of pancreatic cancer. Gas plasma is a technology recently suggested to demonstrate anticancer efficacy. To this end, two murine cell lines were employed to analyze the inflammatory consequences of plasma-treated pancreatic cancer cells (PDA) on macrophages using the kINPen plasma jet. Plasma treatment decreased the metabolic activity, viability, and migratory activity in an ROS- and treatment time-dependent manner in PDA cells in vitro. These results were confirmed in pancreatic tumors grown on chicken embryos in the TUM-CAM model (in ovo). PDA cells promote tumor-supporting M2 macrophage polarization and cluster formation. Plasma treatment of PDA cells abrogated this cluster formation with a mixed M1/M2 phenotype observed in such co-cultured macrophages. Multiplex chemokine and cytokine quantification showed a marked decrease of the neutrophil chemoattractant CXCL1, IL6, and the tumor growth supporting TGFβ and VEGF in plasma-treated compared to untreated co-culture settings. At the same time, macrophage-attractant CCL4 and MCP1 release were profoundly enhanced. These cellular and secretome data suggest that the plasma-inactivated PDA6606 cells modulate the inflammatory profile of murine RAW 264.7 macrophages favorably, which may support plasma cancer therapy.
  • Item
    Therapeutic ROS and Immunity in Cancer-The TRIC-21 Meeting
    (Basel : MDPI, 2021) Bekeschus, Sander; Emmert, Steffen; Clemen, Ramona; Boeckmann, Lars
    The first Therapeutic ROS and Immunity in Cancer (TRIC) meeting was organized by the excellence research center ZIK plasmatis (with its previous Frontiers in Redox Biochemistry and Medicine (FiRBaM) and Young Professionals' Workshop in Plasma Medicine (YPWPM) workshop series in Northern Germany) and the excellence research program ONKOTHER-H (Rostock/Greifswald, Germany). The meeting showcased cutting-edge research and liberated discussions on the application of therapeutic ROS and immunology in cancer treatment, primarily focusing on gas plasma technology. The 2-day hybrid meeting took place in Greifswald and online from 15-16 July 2021, facilitating a wide range of participants totaling 66 scientists from 12 countries and 5 continents. The meeting aimed at bringing together researchers from a variety of disciplines, including chemists, biochemists, biologists, engineers, immunologists, physicists, and physicians for interdisciplinary discussions on using therapeutic ROS and medical gas plasma technology in cancer therapy with the four main sessions: "Plasma, Cancer, Immunity", "Plasma combination therapies", "Plasma risk assessment and patients studies", and "Plasma mechanisms and treated liquids in cancer". This conference report outlines the abstracts of attending scientists submitted to this meeting.
  • Item
    Identification of two kinase inhibitors with synergistic toxicity with low-dose hydrogen peroxide in colorectal cancer cells in vitro
    (Basel : MDPI AG, 2020) Freund, Eric; Liedtke, Kim-Rouven; Miebach, Lea; Wende, Kristian; Heidecke, Amanda; Kaushik, Nagendra Kumar; Choi, Eun Ha; Partecke, Lars-Ivo; Bekeschus, Sander
    Colorectal carcinoma is among the most common types of cancers. With this disease, diffuse scattering in the abdominal area (peritoneal carcinosis) often occurs before diagnosis, making surgical removal of the entire malignant tissue impossible due to a large number of tumor nodules. Previous treatment options include radiation and its combination with intraperitoneal heat-induced chemotherapy (HIPEC). Both options have strong side effects and are often poor in therapeutic efficacy. Tumor cells often grow and proliferate dysregulated, with enzymes of the protein kinase family often playing a crucial role. The present study investigated whether a combination of protein kinase inhibitors and low-dose induction of oxidative stress (using hydrogen peroxide, H2O2) has an additive cytotoxic effect on murine, colorectal tumor cells (CT26). Protein kinase inhibitors from a library of 80 substances were used to investigate colorectal cancer cells for their activity, morphology, and immunogenicity (immunogenic cancer cell death, ICD) upon mono or combination. Toxic compounds identified in 2D cultures were confirmed in 3D cultures, and additive cytotoxicity was identified for the substances lavendustin A, GF109203X, and rapamycin. Toxicity was concomitant with cell cycle arrest, but except HMGB1, no increased expression of immunogenic markers was identified with the combination treatment. The results were validated for GF109203X and rapamycin but not lavendustin A in the 3D model of different colorectal (HT29, SW480) and pancreatic cancer cell lines (MiaPaca, Panc01). In conclusion, our in vitro data suggest that combining oxidative stress with chemotherapy would be conceivable to enhance antitumor efficacy in HIPEC. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Combination treatment with cold physical plasma and pulsed electric fields augments ros production and cytotoxicity in lymphoma
    (Basel : MDPI AG, 2020) Wolff, Christina M.; Kolb, Juergen F.; Weltmann, Klaus-Dieter; Woedtke, Thomas von; Bekeschus, Sander
    New approaches in oncotherapy rely on the combination of different treatments to enhance the efficacy of established monotherapies. Pulsed electric fields (PEFs) are an established method (electrochemotherapy) for enhancing cellular drug uptake while cold physical plasma is an emerging and promising anticancer technology. This study aimed to combine both technologies to elucidate their cytotoxic potential as well as the underlying mechanisms of the effects observed. An electric field generator (0.9–1.0 kV/cm and 100-μs pulse duration) and an atmospheric pressure argon plasma jet were employed for the treatment of lymphoma cell lines as a model system. PEF but not plasma treatment induced cell membrane permeabilization. Additive cytotoxicity was observed for the metabolic activity and viability of the cells while the sequence of treatment in the combination played only a minor role. Intriguingly, a parallel combination was more effective compared to a 15-min pause between both treatment regimens. A combination effect was also found for lipid peroxidation; however, none could be observed in the cytosolic and mitochondrial reactive oxygen species (ROS) production. The supplementation with either antioxidant, a pan-caspase-inhibitor or a ferroptosis inhibitor, all partially rescued lymphoma cells from terminal cell death, which contributes to the mechanistic understanding of this combination treatment. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    BK virus-induced nephritis and cystitis after matched unrelated donor stem cell transplantation: A case report
    (Chichester : Wiley, 2020) Gelbrich, Nadine; Stope, Matthias B.; Bekeschus, Sander; Weigel, Martin; Burchardt, Martin; Zimmermann, Uwe
    Currently, there is no standard therapy for a BK virus infection of the urogenital tract in immunocompromised, stem cell transplanted patients, so that early diagnosis and introduction of supportive measures have the highest response rates to date. © 2020 The Authors. Clinical Case Reports published by John Wiley & Sons Ltd.
  • Item
    Contact-dependent signaling triggers tumor-like proliferation of CCM3 knockout endothelial cells in co-culture with wild-type cells
    (Cham (ZG) : Springer International Publishing AG, 2022) Rath, Matthias; Schwefel, Konrad; Malinverno, Matteo; Skowronek, Dariush; Leopoldi, Alexandra; Pilz, Robin A.; Biedenweg, Doreen; Bekeschus, Sander; Penninger, Josef M.; Dejana, Elisabetta; Felbor, Ute
    Cerebral cavernous malformations (CCM) are low-flow vascular lesions prone to cause severe hemorrhage-associated neurological complications. Pathogenic germline variants in CCM1, CCM2, or CCM3 can be identified in nearly 100% of CCM patients with a positive family history. In line with the concept that tumor-like mechanisms are involved in CCM formation and growth, we here demonstrate an abnormally increased proliferation rate of CCM3-deficient endothelial cells in co-culture with wild-type cells and in mosaic human iPSC-derived vascular organoids. The observation that NSC59984, an anticancer drug, blocked the abnormal proliferation of mutant endothelial cells further supports this intriguing concept. Fluorescence-activated cell sorting and RNA sequencing revealed that co-culture induces upregulation of proangiogenic chemokine genes in wild-type endothelial cells. Furthermore, genes known to be significantly downregulated in CCM3−/− endothelial cell mono-cultures were upregulated back to normal levels in co-culture with wild-type cells. These results support the hypothesis that wild-type ECs facilitate the formation of a niche that promotes abnormal proliferation of mutant ECs. Thus, targeting the cancer-like features of CCMs is a promising new direction for drug development.
  • Item
    Small Molecules in the Treatment of Squamous Cell Carcinomas: Focus on Indirubins
    (Basel : MDPI, 2021) Schäfer, Mirijam; Semmler, Marie Luise; Bernhardt, Thoralf; Fischer, Tobias; Kakkassery, Vinodh; Ramer, Robert; Hein, Martin; Bekeschus, Sander; Langer, Peter; Hinz, Burkhard; Emmert, Steffen; Boeckmann, Lars
    Skin cancers are the most common malignancies in the world. Among the most frequent skin cancer entities, squamous cell carcinoma (SCC) ranks second (~20%) after basal cell carcinoma (~77%). In early stages, a complete surgical removal of the affected tissue is carried out as standard therapy. To treat advanced and metastatic cancers, targeted therapies with small molecule inhibitors are gaining increasing attention. Small molecules are a heterogeneous group of protein regulators, which are produced by chemical synthesis or fermentation. The majority of them belong to the group of receptor tyrosine kinase inhibitors (RTKIs), which specifically bind to certain RTKs and directly influence the respective signaling pathway. Knowledge of characteristic molecular alterations in certain cancer entities, such as SCC, can help identify tumor-specific substances for targeted therapies. Most frequently, altered genes in SCC include TP53, NOTCH, EGFR, and CCND1. For example, the gene CCND1, which codes for cyclin D1 protein, is upregulated in nearly half of SCC cases and promotes proliferation of affected cells. A treatment with the small molecule 5'-nitroindirubin-monoxime (INO) leads to inhibition of cyclin D1 and thus inhibition of proliferation. As a component of Danggui Longhui Wan, a traditional Chinese medicine, indirubins are used to treat chronic diseases and have been shown to inhibit inflammatory reactions. Indirubins are pharmacologically relevant small molecules with proapoptotic and antiproliferative activity. In this review, we discuss the current literature on indirubin-based small molecules in cancer treatment. A special focus is on the molecular biology of squamous cell carcinomas, their alterations, and how these are rendered susceptible to indirubin-based small molecule inhibitors. The potential molecular mechanisms of the efficacy of indirubins in killing SCC cells will be discussed as well.