Search Results

Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Item

Plasma medical oncology: Immunological interpretation of head and neck squamous cell carcinoma

2020, Witzke, Katharina, Seebauer, Christian, Jesse, Katja, Kwiatek, Elisa, Berner, Julia, Semmler, Marie‐Luise, Boeckmann, Lars, Emmert, Steffen, Weltmann, Klaus‐Dieter, Metelmann, Hans‐Robert, Bekeschus, Sander

The prognosis of patients suffering from advanced-stage head and neck squamous cell carcinoma (HNSCC) remains poor. Medical gas plasma therapy receives growing attention as a novel anticancer modality. Our recent prospective observational study on HNSCC patients suffering from contaminated tumor ulcerations without lasting remission after first-line anticancer therapy showed remarkable efficacy of gas plasma treatment, with the ulcerated tumor surface decreasing by up to 80%. However, tumor growth relapsed, and this biphasic response may be a consequence of immunological and molecular changes in the tumor microenvironment that could be caused by (a) immunosuppression, (b) tumor cell adaption, (c) loss of microbe-induced immunostimulation, and/or (d) stromal cell adaption. These considerations may be vital for the design of clinical plasma trials in the future.

Loading...
Thumbnail Image
Item

Plasma, cancer, immunity

2022, Bekeschus, Sander, Clemen, Ramona

Albeit heavily investigated for several decades already, the importance of the immune system in targeting cancer has received wide clinical attention only in recent years. This is partly because of long-standing rather traditional concepts on tumor biology on the one hand and the complexity of the immune system and its processes on the other. The viewpoint of evaluating existing and emerging approaches in oncology based on toxicity to tumors and the ability to engage antitumor-immunity is gaining ground across several disciplines. Along those lines, cold physical plasma was suggested as potential anticancer tool more than a decade ago, but solid evidence of the immune system playing a role in plasma cancer treatment only emerged in recent years. Moreover, plasma may support cancer immunotherapies in the future. Cancer immunotherapies are systemic treatments with biologicals that were reported to synergize with existing local physical modalities before, such as radiotherapy and photodynamic therapy. This review outlines key concepts in oncology, immunology, and tumor therapy, links them to plasma research, and discusses immuno-oncological consequences. Finally, promising future clinical applications are summarized. Synoptically, first scientific evidence supports an immuno-oncological dimension of plasma cancer treatment in selected instances, but robust clinical evidence is still lacking. More basic and clinical research is needed to determine the immuno-molecular mechanisms and detailed plasma application modalities to facilitate real patient benefit in the long term.

Loading...
Thumbnail Image
Item

White paper on plasma for medicine and hygiene: Future in plasma health sciences

2019, Bekeschus, Sander, Favia, Pietro, Robert, Eric, von Woedtke, Thomas

Plasma Science and Technology offer their valuable contribution to human health since more than 50 years, after decades of experiences in the field of biomaterials; and more than a decade in using plasmas for therapeutic uses in medicine. Current knowledge as well as key challenges and opportunities for the human health have been intensely discussed during the Future in Plasma Science II (FIPS II) workshop in February 2016 in Greifswald, Germany. This contribution summarizes the major outcomes of the meeting and the current literature and consensus with an emphasis on major challenges in the fields of Plasma Science and Technology for improving human health.

Loading...
Thumbnail Image
Item

Risk Evaluation of EMT and Inflammation in Metastatic Pancreatic Cancer Cells Following Plasma Treatment

2020, Freund, Eric, Spadola, Chiara, Schmidt, Anke, Privat-Maldonado, Angela, Bogaerts, Annemie, Woedtke, Thomas von, Weltmann, Klaus-Dieter, Heidecke, Claus-Dieter, Partecke, Lars-Ivo, Käding, André, Bekeschus, Sander

The requirements for new technologies to serve as anticancer agents go far beyond their toxicity potential. Novel applications also need to be safe on a molecular and patient level. In a broader sense, this also relates to cancer metastasis and inflammation. In a previous study, the toxicity of an atmospheric pressure argon plasma jet in four human pancreatic cancer cell lines was confirmed and plasma treatment did not promote metastasis in vitro and in ovo. Here, these results are extended by additional types of analysis and new models to validate and define on a molecular level the changes related to metastatic processes in pancreatic cancer cells following plasma treatment in vitro and in ovo. In solid tumors that were grown on the chorion-allantois membrane of fertilized chicken eggs (TUM-CAM), plasma treatment induced modest to profound apoptosis in the tissues. This, however, was not associated with a change in the expression levels of adhesion molecules, as shown using immunofluorescence of ultrathin tissue sections. Culturing of the cells detached from these solid tumors for 6d revealed a similar or smaller total growth area and expression of ZEB1, a transcription factor associated with cancer metastasis, in the plasma-treated pancreatic cancer tissues. Analysis of in vitro and in ovo supernatants of 13 different cytokines and chemokines revealed cell line-specific effects of the plasma treatment but a noticeable increase of, e.g., growth-promoting interleukin 10 was not observed. Moreover, markers of epithelial-to-mesenchymal transition (EMT), a metastasis-promoting cellular program, were investigated. Plasma-treated pancreatic cancer cells did not present an EMT-profile. Finally, a realistic 3D tumor spheroid co-culture model with pancreatic stellate cells was employed, and the invasive properties in a gel-like cellular matrix were investigated. Tumor outgrowth and spread was similar or decreased in the plasma conditions. Altogether, these results provide valuable insights into the effect of plasma treatment on metastasis-related properties of cancer cells and did not suggest EMT-promoting effects of this novel cancer therapy. © Copyright © 2020 Freund, Spadola, Schmidt, Privat-Maldonado, Bogaerts, von Woedtke, Weltmann, Heidecke, Partecke, Käding and Bekeschus.

Loading...
Thumbnail Image
Item

Oral SARS-CoV-2 reduction by local treatment: A plasma technology application?

2022, von Woedtke, Thomas, Gabriel, Gülsah, Schaible, Ulrich E., Bekeschus, Sander

The SARS-CoV-2 pandemic reemphasized the importance of and need for efficient hygiene and disinfection measures. The coronavirus' efficient spread capitalizes on its airborne transmission routes via virus aerosol release from human oral and nasopharyngeal cavities. Besides the upper respiratory tract, efficient viral replication has been described in the epithelium of these two body cavities. To this end, the idea emerged to employ plasma technology to locally reduce mucosal viral loads as an additional measure to reduce patient infectivity. We here outline conceptual ideas of such treatment concepts within what is known in the antiviral actions of plasma treatment so far.

Loading...
Thumbnail Image
Item

Development of an electrochemical sensor for in-situ monitoring of reactive species produced by cold physical plasma

2021, Nasri, Zahra, Bruno, Giuliana, Bekeschus, Sander, Weltmann, Klaus-Dieter, von Woedtke, Thomas, Wende, Kristian

The extent of clinical applications of oxidative stress-based therapies such as photodynamic therapy (PDT) or respiratory chain disruptors are increasing rapidly, with cold physical plasma (CPP) emerging as a further option. According to the current knowledge, the biological effects of CPP base on reactive oxygen and nitrogen species (RONS) relevant in cell signaling. To monitor the safety and the biological impact of the CPP, determining the local generation of RONS in the same environment in which they are going to be applied is desirable. Here, for the first time, the development of an electrochemical sensor for the simple, quick, and parallel determination of plasma-generated reactive species is described. The proposed sensor consists of a toluidine blue redox system that is covalently attached to a gold electrode surface. By recording chronoamperometry at different potentials, it is possible to follow the in-situ production of the main long-lived reactive oxygen and nitrogen species like hydrogen peroxide, nitrite, hypochlorite, and chloramine with time. The applicability of this electrochemical sensor for the in-situ assessment of reactive species in redox-based therapies is demonstrated by the precise analysis of hydrogen peroxide dynamics in the presence of blood cancer cells.

Loading...
Thumbnail Image
Item

Reactive species driven oxidative modifications of peptides—Tracing physical plasma liquid chemistry

2021, Wenske, Sebastian, Lackmann, Jan-Wilm, Busch, Larissa Milena, Bekeschus, Sander, von Woedtke, Thomas, Wende, Kristian

The effluence of physical plasma consists of a significant share of reactive species, which may interact with biomolecules and yield chemical modifications comparable to those of physiological processes, e.g., post-translational protein modifications (oxPTMs). Consequentially, the aim of this work is to understand the role of physical plasma-derived reactive species in the introduction of oxPTM-like modifications in proteins. An artificial peptide library consisting of ten peptides was screened against the impact of two plasma sources, the argon-driven MHz-jet kINPen and the helium-driven RF-jet COST-Jet. Changes in the peptide molecular structure were analyzed by liquid chromatography–mass spectrometry. The amino acids cysteine, methionine, tyrosine, and tryptophan were identified as major targets. The introduction of one, two, or three oxygen atoms was the most common modification observed. Distinct modification patterns were observed for nitration (+N + 2O–H), which occurred in kINPen only (peroxynitrite), and chlorination (+Cl–H) that was exclusive for the COST-Jet in the presence of chloride ions (atomic oxygen/hypochlorite). Predominantly for the kINPen, singlet oxygen-related modifications, e.g., cleavage of tryptophan, were observed. Oxidation, carbonylation, and double oxidations were attributed to the impact of hydroxyl radicals and atomic oxygen. Leading to a significant change in the peptide side chain, most of these oxPTM-like modifications affect the secondary structure of amino acid chains, and amino acid polarity/functionality, ultimately modifying the performance and stability of cellular proteins.

Loading...
Thumbnail Image
Item

Zebrafish larvae as a toxicity model in plasma medicine

2021, Gandhirajan, Rajesh K., Endlich, Nicole, Bekeschus, Sander

Plasma technology has emerged as a promising tool in medicine that, however, requires not only efficacy but also toxicological assessments. Traditional cell culture systems are fast and economical, but they lack in vivo relevance; however, rodent models are highly complex and necessitate extended facilities. Zebrafish larvae bridge this gap, and many larvae can be analyzed in well plates in a single run, giving results in 1–2 days. Using the kINPen, we found plasma exposure to reduce hedging rates and viability in a dose-dependent manner, accompanied with an increase in reactive oxygen species and a decrease of glutathione in plasma-treated fish. Modest growth alterations were also observed. Altogether, zebrafish larvae constitute a fast, reliable, and relevant model for testing the toxicity of plasma sources.

Loading...
Thumbnail Image
Item

Combined toxicity of indirubins with cold physical plasma in skin cancer cells in vitro

2022, Berner, Julia, Bekeschus, Sander

Cold physical plasma is a partially ionized gas that generates various components identified as potential anticancer compounds. Due to its topical application, cold plasmas are suitable, especially in dermatological applications. We, therefore, tested the cold plasma effects in skin cancer cells in vitro. An atmospheric pressure argon plasma jet was used as the plasma source. The plasma exposure alone reduced the metabolic activity and induced lethal effects in a treatment time-dependent fashion in both cell lines investigated. This was accompanied by executioner caspases 3 and 7, cleavage indicative of apoptosis and reduced cell migration and proliferation. Recent research also indicated roles of novel indirubin derivatives with potent anticancer effects. Three candidates were tested, and reduced metabolic activity and viability in a dose-dependent manner were found. Strikingly, one compound exerted notable synergistic toxicity when combined with plasma in skin cancer cells, which may be promising for future in vivo experiments.