Search Results

Now showing 1 - 10 of 68
  • Item
    ROS Pleiotropy in Melanoma and Local Therapy with Physical Modalities
    (Austin, Tex. : Landes Bioscience, 2021) Sagwal, Sanjeev Kumar; Bekeschus, Sander
    Metabolic energy production naturally generates unwanted products such as reactive oxygen species (ROS), causing oxidative damage. Oxidative damage has been linked to several pathologies, including diabetes, premature aging, neurodegenerative diseases, and cancer. ROS were therefore originally anticipated as an imperative evil, a product of an imperfect system. More recently, however, the role of ROS in signaling and tumor treatment is increasingly acknowledged. This review addresses the main types, sources, and pathways of ROS in melanoma by linking their pleiotropic roles in antioxidant and oxidant regulation, hypoxia, metabolism, and cell death. In addition, the implications of ROS in various physical therapy modalities targeting melanoma, such as radiotherapy, electrochemotherapy, hyperthermia, photodynamic therapy, and medical gas plasma, are also discussed. By including ROS in the main picture of melanoma skin cancer and as an integral part of cancer therapies, a greater understanding of melanoma cell biology is presented, which ultimately may elucidate additional clues on targeting therapy resistance of this most deadly form of skin cancer.
  • Item
    Non-thermal plasma modulates cellular markers associated with immunogenicity in a model of latent HIV-1 infection
    (San Francisco, California, US : PLOS, 2021) Mohamed, Hager; Clemen, Ramona; Freund, Eric; Lackmann, Jan-Wilm; Wende, Kristian; Connors, Jennifer; Haddad, Elias K.; Dampier, Will; Wigdahl, Brian; Miller, Vandana; Bekeschus, Sander; Krebs, Fred C.; Kashanchi, Fatah
    Effective control of infection by human immunodeficiency virus type 1 (HIV-1), the causative agent of the acquired immunodeficiency syndrome (AIDS), requires continuous and life-long use of anti-retroviral therapy (ART) by people living with HIV-1 (PLWH). In the absence of ART, HIV-1 reemergence from latently infected cells is ineffectively suppressed due to suboptimal innate and cytotoxic T lymphocyte responses. However, ART-free control of HIV-1 infection may be possible if the inherent immunological deficiencies can be reversed or restored. Herein we present a novel approach for modulating the immune response to HIV-1 that involves the use of non-thermal plasma (NTP), which is an ionized gas containing various reactive oxygen and nitrogen species (RONS). J-Lat cells were used as a model of latent HIV-1 infection to assess the effects of NTP application on viral latency and the expression of pro-phagocytic and pro-chemotactic damage-associated molecular patterns (DAMPs). Exposure of J-Lat cells to NTP resulted in stimulation of HIV-1 gene expression, indicating a role in latency reversal, a necessary first step in inducing adaptive immune responses to viral antigens. This was accompanied by the release of pro-inflammatory cytokines and chemokines including interleukin-1β (IL-1β) and interferon-γ (IFN-γ); the display of pro-phagocytic markers calreticulin (CRT), heat shock proteins (HSP) 70 and 90; and a correlated increase in macrophage phagocytosis of NTP-exposed J-Lat cells. In addition, modulation of surface molecules that promote or inhibit antigen presentation was also observed, along with an altered array of displayed peptides on MHC I, further suggesting methods by which NTP may modify recognition and targeting of cells in latent HIV-1 infection. These studies represent early progress toward an effective NTP-based ex vivo immunotherapy to resolve the dysfunctions of the immune system that enable HIV-1 persistence in PLWH.
  • Item
    Short- and long-term polystyrene nano- and microplastic exposure promotes oxidative stress and divergently affects skin cell architecture and Wnt/beta-catenin signaling
    (London : BioMed Central, 2023) Schmidt, Anke; da Silva Brito, Walison Augusto; Singer, Debora; Mühl, Melissa; Berner, Julia; Saadati, Fariba; Wolff, Christina; Miebach, Lea; Wende, Kristian; Bekeschus, Sander
    Nano- and microplastic particles (NMP) are strong environmental contaminants affecting marine ecosystems and human health. The negligible use of biodegradable plastics and the lack of knowledge about plastic uptake, accumulation, and functional consequences led us to investigate the short- and long-term effects in freshly isolated skin cells from mice. Using fluorescent NMP of several sizes (200 nm to 6 Âµm), efficient cellular uptake was observed, causing, however, only minor acute toxicity as metabolic activity and apoptosis data suggested, albeit changes in intracellular reactive species and thiol levels were observed. The internalized NMP induced an altered expression of various targets of the nuclear factor-2-related transcription factor 2 pathway and were accompanied by changed antioxidant and oxidative stress signaling responses, as suggested by altered heme oxygenase 1 and glutathione peroxide 2 levels. A highly increased beta-catenin expression under acute but not chronic NMP exposure was concomitant with a strong translocation from membrane to the nucleus and subsequent transcription activation of Wnt signaling target genes after both single-dose and chronic long-term NMP exposure. Moreover, fibroblast-to-myofibroblast transdifferentiation accompanied by an increase of α smooth muscle actin and collagen expression was observed. Together with several NMP-induced changes in junctional and adherence protein expression, our study for the first time elucidates the acute and chronic effects of NMP of different sizes in primary skin cells' signaling and functional biology, contributing to a better understanding of nano- and microplastic to health risks in higher vertebrates.
  • Item
    Investigating the Mutagenicity of a Cold Argon-Plasma Jet in an HET-MN Model
    (San Francisco, California, US : PLOS, 2016) Kluge, Susanne; Bekeschus, Sander; Bender, Claudia; Benkhai, Hicham; Sckell, Axel; Below, Harald; Stope, Matthias B.; Kramer, Axel; Yousfi, Mohammed
    Objective: So-called cold physical plasmas for biomedical applications generate reactive oxygen and nitrogen species and the latter can trigger DNA damage at high concentrations. Therefore, the mutagenic risks of a certified atmospheric pressure argon plasma jet (kINPen MED) and its predecessor model (kINPen 09) were assessed. Methods: Inner egg membranes of fertilized chicken eggs received a single treatment with either the kINPen 09 (1.5, 2.0, or 2.5 min) or the kINPen MED (3, 4, 5, or 10 min). After three days of incubation, blood smears (panoptic May-Grünwald-Giemsa stain) were performed, and 1000 erythrocytes per egg were evaluated for the presence of polychromatic and normochromic nuclear staining as well as nuclear aberrations and binucleated cells (hen’s egg test for micronuclei induction, HET-MN). At the same time, the embryo mortality was documented. For each experiment, positive controls (cyclophosphamide and methotrexate) and negative controls (NaCl-solution, argon gas) were included. Additionally, the antioxidant potential of the blood plasma was assessed by ascorbic acid oxidation assay after treatment. Results: For both plasma sources, there was no evidence of genotoxicity, although at the longest plasma exposure time of 10 min the mortality of the embryos exceeded 40%. The antioxidant potential in the egg’s blood plasma was not significantly reduced immediately (p = 0.32) or 1 h (p = 0.19) post exposure to cold plasma. Conclusion: The longest plasma treatment time with the kINPen MED was 5–10 fold above the recommended limit for treatment of chronic wounds in clinics. We did not find mutagenic effects for any plasma treatment time using the either kINPen 09 or kINPen MED. The data provided with the current study seem to confirm the lack of a genotoxic potential suggesting that a veterinary or clinical application of these argon plasma jets does not pose mutagenic risks.
  • Item
    In ovo model in cancer research and tumor immunology
    (Lausanne : Frontiers Media, 2022) Miebach, Lea; Berner, Julia; Bekeschus, Sander
    Considering cancer not only as malignant cells on their own but as a complex disease in which tumor cells interact and communicate with their microenvironment has motivated the establishment of clinically relevant 3D models in past years. Technological advances gave rise to novel bioengineered models, improved organoid systems, and microfabrication approaches, increasing scientific importance in preclinical research. Notwithstanding, mammalian in vivo models remain closest to mimic the patient’s situation but are limited by cost, time, and ethical constraints. Herein, the in ovo model bridges the gap as an advanced model for basic and translational cancer research without the need for ethical approval. With the avian embryo being a naturally immunodeficient host, tumor cells and primary tissues can be engrafted on the vascularized chorioallantoic membrane (CAM) with high efficiencies regardless of species-specific restrictions. The extraembryonic membranes are connected to the embryo through a continuous circulatory system, readily accessible for manipulation or longitudinal monitoring of tumor growth, metastasis, angiogenesis, and matrix remodeling. However, its applicability in immunoncological research is largely underexplored. Dual engrafting of malignant and immune cells could provide a platform to study tumor-immune cell interactions in a complex, heterogenic and dynamic microenvironment with high reproducibility. With some caveats to keep in mind, versatile methods for in and ex ovo monitoring of cellular and molecular dynamics already established in ovo are applicable alike. In this view, the present review aims to emphasize and discuss opportunities and limitations of the chicken embryo model for pre-clinical research in cancer and cancer immunology.
  • Item
    Acquired cancer tyrosine kinase inhibitor resistance: ROS as critical determinants
    (London : Macmillan Publishers, part of Springer Nature, 2021) Bekeschus, Sander
    [No abstract available]
  • Item
    Antimicrobial effects of microwave-induced plasma torch (MiniMIP) treatment on Candida albicans biofilms
    (Oxford : Wiley-Blackwell, 2019) Handorf, Oliver; Schnabel, Uta; Bösel, André; Weihe, Thomas; Bekeschus, Sander; Graf, Alexander Christian; Riedel, Katharina; Ehlbeck, Jörg
    The susceptibility of Candida albicans biofilms to a non-thermal plasma treatment has been investigated in terms of growth, survival and cell viability by a series of in vitro experiments. For different time periods, the C. albicans strain SC5314 was treated with a microwave-induced plasma torch (MiniMIP). The MiniMIP treatment had a strong effect (reduction factor (RF) = 2.97 after 50 s treatment) at a distance of 3 cm between the nozzle and the superior regions of the biofilms. In addition, a viability reduction of 77% after a 20 s plasma treatment and a metabolism reduction of 90% after a 40 s plasma treatment time were observed for C. albicans. After such a treatment, the biofilms revealed an altered morphology of their cells by atomic force microscopy (AFM). Additionally, fluorescence microscopy and confocal laser scanning microscopy (CLSM) analyses of plasma-treated biofilms showed that an inactivation of cells mainly appeared on the bottom side of the biofilms. Thus, the plasma inactivation of the overgrown surface reveals a new possibility to combat biofilms. © 2019 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
  • Item
    Hypochlorous acid selectively promotes toxicity and the expression of danger signals in human abdominal cancer cells
    (Athens : Spandidos Publ., 2021) Freund, Eric; Miebach, Lea; Stope, Matthias; Bekeschus, Sander
    Tumors of the abdominal cavity, such as colorectal, pancreatic and ovarian cancer, frequently metastasize into the peritoneum. Large numbers of metastatic nodules hinder cura- tive surgical resection, necessitating lavage with hyperthermic intraperitoneal chemotherapy (HIPEC). However, HIPEC not only causes severe side effects but also has limited therapeutic efficacy in various instances. At the same time, the age of immunotherapies such as biological agents, checkpoint- inhib- itors or immune-cell therapies, increasingly emphasizes the critical role of anticancer immunity in targeting malignancies. The present study investigated the ability of three types of long-lived reactive species (oxidants) to inactivate cancer cells and potentially complement current HIPEC regimens, as well as to increase tumor cell expression of danger signals that stimulate innate immunity. The human abdominal cancer cell lines HT-29, Panc-01 and SK-OV-3 were exposed to different concentrations of hydrogen peroxide (H2O2), hypochlorous acid (HOCl) and peroxynitrite (ONOO-). Metabolic activity was measured, as well as determination of cell death and danger signal expression levels via flow cytometry and detection of intracellular oxidation via high-content microscopy. Oxidation of tumor decreased intracellular levels of the antioxidant glutathione and induced oxidation in mitochondria, accompa- nied by a decrease in metabolic activity and an increase in regulated cell death. At similar concentrations, HOCl showed the most potent effects. Non-malignant HaCaT keratinocytes were less affected, suggesting the approach to be selective to some extent. Pro-immunogenic danger molecules were investi- gated by assessing the expression levels of calreticulin (CRT), and heat-shock protein (HSP)70 and HSP90. CRT expression was greatest following HOCl and ONOO- treatment, whereas HOCl and H2O2 resulted in the greatest increase in HSP70 and HSP90 expression levels. These results suggested that HOCl may be a promising agent to complement current HIPEC regi- mens targeting peritoneal carcinomatosis.
  • Item
    Gas plasma irradiation of breast cancers promotes immunogenicity, tumor reduction, and an abscopal effect in vivo
    (Abingdon : Taylor & Franics, 2021) Mahdikia, Hamed; Saadati, Fariba; Freund, Eric; Gaipl, Udo S.; Majidzadeh-A, Keivan; Shokri, Babak; Bekeschus, Sander
    While many new and emerging therapeutic concepts have appeared throughout the last decades, cancer still is fatal in many patients. At the same time, the importance of immunology in oncotherapy is increasingly recognized, not only since the advent of checkpoint therapy. Among the many types of tumors, also breast cancer has an immunological dimension that might be exploited best by increasing the immunogenicity of the tumors in the microenvironment. To this end, we tested a novel therapeutic concept, gas plasma irradiation, for its ability to promote the immunogenicity and increase the toxicity of breast cancer cells in vitro and in vivo. Mechanistically, this emerging medical technology is employing a plethora of reactive oxygen species being deposited on the target cells and tissues. Using 2D cultures and 3D tumor spheroids, we found gas plasma-irradiation to drive apoptosis and immunogenic cancer cell death (ICD) in vitro, as evidenced by an increased expression of calreticulin, heat-shock proteins 70 and 90, and MHC-I. In 4T1 breast cancer-bearing mice, the gas plasma irradiation markedly decreased tumor burden and increased survival. Interestingly, non-treated tumors injected in the opposite flank of mice exposed to our novel treatment also exhibited reduced growth, arguing for an abscopal effect. This was concomitant with an increase of apoptosis and tumor-infiltrating CD4+ and CD8+ T-cells as well as dendritic cells in the tissues. In summary, we found gas plasma-irradiated murine breast cancers to induce toxicity and augmented immunogenicity, leading to reduced tumor growth at a site remote to the treatment area.
  • Item
    Toxicity and Immunogenicity in Murine Melanoma following Exposure to Physical Plasma-Derived Oxidants
    (Austin, Tex. : Landes Bioscience, 2017) Bekeschus, Sander; Rödder, Katrin; Fregin, Bob; Otto, Oliver; Lippert, Maxi; Weltmann, Klaus-Dieter; Wende, Kristian; Schmidt, Anke; Gandhirajan, Rajesh Kumar
    Metastatic melanoma is an aggressive and deadly disease. Therapeutic advance has been achieved by antitumor chemo- and radiotherapy. These modalities involve the generation of reactive oxygen and nitrogen species, affecting cellular viability, migration, and immunogenicity. Such species are also created by cold physical plasma, an ionized gas capable of redox modulating cells and tissues without thermal damage. Cold plasma has been suggested for anticancer therapy. Here, melanoma cell toxicity, motility, and immunogenicity of murine metastatic melanoma cells were investigated following plasma exposure in vitro. Cells were oxidized by plasma, leading to decreased metabolic activity and cell death. Moreover, plasma decelerated melanoma cell growth, viability, and cell cycling. This was accompanied by increased cellular stiffness and upregulation of zonula occludens 1 protein in the cell membrane. Importantly, expression levels of immunogenic cell surface molecules such as major histocompatibility complex I, calreticulin, and melanocortin receptor 1 were significantly increased in response to plasma. Finally, plasma treatment significantly decreased the release of vascular endothelial growth factor, a molecule with importance in angiogenesis. Altogether, these results suggest beneficial toxicity of cold plasma in murine melanomas with a concomitant immunogenicity of potential interest in oncology.