Search Results

Now showing 1 - 4 of 4
  • Item
    Argon Plasma Exposure Augments Costimulatory Ligands and Cytokine Release in Human Monocyte-Derived Dendritic Cells
    (Basel : Molecular Diversity Preservation International (MDPI), 2021) Bekeschus, Sander; Meyer, Dorothee; Arlt, Kevin; von Woedtke, Thomas; Miebach, Lea; Freund, Eric; Clemen, Ramona
    Cold physical plasma is a partially ionized gas expelling many reactive oxygen and nitrogen species (ROS/RNS). Several plasma devices have been licensed for medical use in dermatology, and recent experimental studies suggest their putative role in cancer treatment. In cancer therapies with an immunological dimension, successful antigen presentation and inflammation modulation is a key hallmark to elicit antitumor immunity. Dendritic cells (DCs) are critical for this task. However, the inflammatory consequences of DCs following plasma exposure are unknown. To this end, human monocyte-derived DCs (moDCs) were expanded from isolated human primary monocytes; exposed to plasma; and their metabolic activity, surface marker expression, and cytokine profiles were analyzed. As controls, hydrogen peroxide, hypochlorous acid, and peroxynitrite were used. Among all types of ROS/RNS-mediated treatments, plasma exposure exerted the most notable increase of activation markers at 24 h such as CD25, CD40, and CD83 known to be crucial for T cell costimulation. Moreover, the treatments increased interleukin (IL)-1α, IL-6, and IL-23. Altogether, this study suggests plasma treatment augmenting costimulatory ligand and cytokine expression in human moDCs, which might exert beneficial effects in the tumor microenvironment.
  • Item
    Combined toxicity of gas plasma treatment and nanoparticles exposure in melanoma cells in vitro
    (Basel : MDPI, 2021) Bekeschus, Sander
    Despite continuous advances in therapy, cancer remains a deadly disease. Over the past years, gas plasma technology emerged as a novel tool to target tumors, especially skin. Another promising anticancer approach are nanoparticles. Since combination therapies are becoming increas-ingly relevant in oncology, both gas plasma treatment and nanoparticle exposure were combined. A series of nanoparticles were investigated in parallel, namely, silica, silver, iron oxide, cerium oxide, titanium oxide, and iron-doped titanium oxide. For gas plasma treatment, the atmospheric pressure argon plasma jet kINPen was utilized. Using three melanoma cell lines, the two murine non-metastatic B16F0 and metastatic B16F10 cells and the human metastatic B-Raf mutant cell line SK-MEL-28, the combined cytotoxicity of both approaches was identified. The combined cytotoxicity of gas plasma treatment and nanoparticle exposure was consistent across all three cell lines for silica, silver, iron oxide, and cerium oxide. In contrast, for titanium oxide and iron-doped titanium oxide, significantly combined cytotoxicity was only observed in B16F10 cells.
  • Item
    One Year Follow-Up Risk Assessment in SKH-1 Mice and Wounds Treated with an Argon Plasma Jet
    (Basel : Molecular Diversity Preservation International, 2017-4-19) Schmidt, Anke; von Woedtke, Thomas; Stenzel, Jan; Lindner, Tobias; Polei, Stefan; Vollmar, Brigitte; Bekeschus, Sander
    Multiple evidence in animal models and in humans suggest a beneficial role of cold physical plasma in wound treatment. Yet, risk assessment studies are important to further foster therapeutic advancement and acceptance of cold plasma in clinics. Accordingly, we investigated the long-term side effects of repetitive plasma treatment over 14 consecutive days in a rodent full-thickness ear wound model. Subsequently, animals were housed for 350 days and sacrificed thereafter. In blood, systemic changes of the pro-inflammatory cytokines interleukin 1β and tumor necrosis factor α were absent. Similarly, tumor marker levels of α-fetoprotein and calcitonin remained unchanged. Using quantitative PCR, the expression levels of several cytokines and tumor markers in liver, lung, and skin were found to be similar in the control and treatment group as well. Likewise, histological and immunohistochemical analysis failed to detect abnormal morphological changes and the presence of tumor markers such as carcinoembryonic antigen, α-fetoprotein, or the neighbor of Punc 11. Absence of neoplastic lesions was confirmed by non-invasive imaging methods such as anatomical magnetic resonance imaging and positron emission tomography-computed tomography. Our results suggest that the beneficial effects of cold plasma in wound healing come without apparent side effects including tumor formation or chronic inflammation.
  • Item
    Hmox1 Upregulation Is a Mutual Marker in Human Tumor Cells Exposed to Physical Plasma-Derived Oxidants
    (Basel : MDPI, 2018-10-27) Bekeschus, Sander; Freund, Eric; Wende, Kristian; Gandhirajan, Rajesh; Schmidt, Anke
    Increasing numbers of cancer deaths worldwide demand for new treatment avenues. Cold physical plasma is a partially ionized gas expelling a variety of reactive oxygen and nitrogen species, which can be harnesses therapeutically. Plasmas and plasma-treated liquids have antitumor properties in vitro and in vivo. Yet, global response signatures to plasma treatment have not yet been identified. To this end, we screened eight human cancer cell lines to investigate effects of low-dose, tumor-static plasma-treated medium (PTM) on cellular activity, immune-modulatory properties, and transcriptional levels of 22 redox-related genes. With PTM, a moderate reduction of metabolic activity and modest modulation of chemokine/cytokine pattern and markers of immunogenic cell death was observed. Strikingly, the Nuclear factor (erythroid-derived 2)-like 2 (nrf2) target heme oxygenase 1 (hmox1) was upregulated in all cell lines 4 h post PTM-treatment. nrf2 was not changed, but its baseline expression inversely and significantly correlated with hmox1 expression after exposure to PTM. Besides awarding hmox1 a central role with plasma-derived oxidants, we present a transcriptional redox map of 22 targets and chemokine/cytokine secretion map of 13 targets across eight different human tumor cell lines of four tumor entities at baseline activity that are useful for future studies in this field.