Search Results

Now showing 1 - 10 of 15
  • Item
    Cold argon plasma as adjuvant tumour therapy on progressive head and neck cancer: A preclinical study
    (Basel : MDPI, 2019) Hasse, Sybille; Seebauer, Christian; Wende, Kristian; Schmidt, Anke; Metelmann, Hans-Robert; Woedtke, Thomas von; Bekeschus, Sander
    Investigating cold argon plasma (CAP) for medical applications is a rapidly growing, innovative field of research. The controllable supply of reactive oxygen and nitrogen species through CAP has the potential for utilization in tumour treatment. Maxillofacial surgery is limited if tumours grow on vital structures such as the arteria carotis. Here CAP could be considered as an option for adjuvant intraoperative tumour therapy especially in the case of squamous cell carcinoma of the head and neck. Further preclinical research is necessary to investigate the efficacy of this technology for future clinical applications in cancer treatment. Initially, a variety of in vitro assays was performed on two cell lines that served as surrogate for the squamous cell carcinoma (SCC) and healthy tissue, respectively. Cell viability, motility and the activation of apoptosis in SCC cells (HNO97) was compared with those in normal HaCaT keratinocytes. In addition, induction of apoptosis in ex vivo CAP treated human tissue biopsies of patients with tumours of the head and neck was monitored and compared to healthy control tissue of the same patient. In response to CAP treatment, normal HaCaT keratinocytes differed significantly from their malignant counterpart HNO97 cells in cell motility only whereas cell viability remained similar. Moreover, CAP treatment of tumour tissue induced more apoptotic cells than in healthy tissue that was accompanied by elevated extracellular cytochrome c levels. This study promotes a future role of CAP as an adjuvant intraoperative tumour therapy option in the treatment of head and neck cancer. Moreover, patient-derived tissue explants complement in vitro examinations in a meaningful way to reflect an antitumoral role of CAP. © 2019 by the authors.
  • Item
    Plasma Medicine Technologies
    (Basel : MDPI, 2021) Kaushik, Nagendra Kumar; Bekeschus, Sander; Tanaka, Hiromasa; Lin, Abraham; Choi, Eun Ha
    This Special Issue, entitled “Plasma Medicine Technologies”, covers the latest remarkable developments in the field of plasma bioscience and medicine. Plasma medicine is an interdisciplinary field that combines the principles of plasma physics, material science, bioscience, and medicine, towards the development of therapeutic strategies. A study on plasma medicine has yielded the development of new treatment opportunities in medical and dental sciences. An important aspect of this issue is the presentation of research underlying new therapeutic methods that are useful in medicine, dentistry, sterilization, and, in the current scenario, that challenge perspectives in biomedical sciences. This issue is focused on basic research on the characterization of the bioplasma sources applicable to living cells, especially to the human body, and fundamental research on the mutual interactions between bioplasma and organic–inorganic liquids, and bio or nanomaterials.
  • Item
    Activation of murine immune cells upon co-culture with plasma-treated B16F10 melanoma cells
    (Basel : MDPI, 2019) Rödder, Katrin; Moritz, Juliane; Miller, Vandana; Weltmann, Klaus-Dieter; Metelmann, Hans-Robert; Gandhirajan, Rajesh; Bekeschus, Sander
    Recent advances in melanoma therapy increased median survival in patients. However, death rates are still high, motivating the need of novel avenues in melanoma treatment. Cold physical plasma expels a cocktail of reactive species that have been suggested for cancer treatment. High species concentrations can be used to exploit apoptotic redox signaling pathways in tumor cells. Moreover, an immune-stimulatory role of plasma treatment, as well as plasma-killed tumor cells, was recently proposed, but studies using primary immune cells are scarce. To this end, we investigated the role of plasma-treated murine B16F10 melanoma cells in modulating murine immune cells' activation and marker profile. Melanoma cells exposed to plasma showed reduced metabolic and migratory activity, and an increased release of danger signals (ATP, CXCL1). This led to an altered cytokine profile with interleukin-1β (IL-1β) and CCL4 being significantly increased in plasma-treated mono- and co-cultures with immune cells. In T cells, plasma-treated melanoma cells induced extracellular signal-regulated Kinase (ERK) phosphorylation and increased CD28 expression, suggesting their activation. In monocytes, CD115 expression was elevated as a marker for activation. In summary, here we provide proof of concept that plasma-killed tumor cells are recognized immunologically, and that plasma exerts stimulating effects on immune cells alone. © 2019 by the authors.
  • Item
    Combined toxicity of gas plasma treatment and nanoparticles exposure in melanoma cells in vitro
    (Basel : MDPI, 2021) Bekeschus, Sander
    Despite continuous advances in therapy, cancer remains a deadly disease. Over the past years, gas plasma technology emerged as a novel tool to target tumors, especially skin. Another promising anticancer approach are nanoparticles. Since combination therapies are becoming increas-ingly relevant in oncology, both gas plasma treatment and nanoparticle exposure were combined. A series of nanoparticles were investigated in parallel, namely, silica, silver, iron oxide, cerium oxide, titanium oxide, and iron-doped titanium oxide. For gas plasma treatment, the atmospheric pressure argon plasma jet kINPen was utilized. Using three melanoma cell lines, the two murine non-metastatic B16F0 and metastatic B16F10 cells and the human metastatic B-Raf mutant cell line SK-MEL-28, the combined cytotoxicity of both approaches was identified. The combined cytotoxicity of gas plasma treatment and nanoparticle exposure was consistent across all three cell lines for silica, silver, iron oxide, and cerium oxide. In contrast, for titanium oxide and iron-doped titanium oxide, significantly combined cytotoxicity was only observed in B16F10 cells.
  • Item
    Lack of Adverse Effects of Cold Physical Plasma-Treated Blood from Leukemia Patients: A Proof-of-Concept Study
    (Basel : MDPI, 2021) Golpour, Monireh; Alimohammadi, Mina; Mohseni, Alireza; Zaboli, Ehsan; Sohbatzadeh, Farshad; Bekeschus, Sander; Rafiei, Alireza
    Chronic lymphocytic leukemia (CLL) is the most common blood malignancy with multiple therapeutic challenges. Cold physical plasma has been considered a promising approach in cancer therapy in recent years. In this study, we aimed to evaluate the cytotoxic effect of cold plasma or plasma-treated solutions (PTS) on hematologic parameters in the whole blood of CLL patients. The mean red blood cell count, white blood cell (WBC) count, platelet and hemoglobin counts, and peripheral blood smear images did not significantly differ between treated and untreated samples in either CLL or healthy individuals. However, both direct plasma and indirect PTS treatment increased lipid peroxidation and RNS deposition in the whole blood of CLL patients and in healthy subjects. In addition, the metabolic activity of WBCs was decreased with 120 s of cold plasma or PTS treatment after 24 h and 48 h. However, cold plasma and PTS treatment did not affect the prothrombin time, partial thromboplastin time, nor hemolysis in either CLL patients or in healthy individuals. The present study identifies the components of cold plasma to reach the blood without disturbing the basic parameters important in hematology, confirming the idea that the effect of cold plasma may not be limited to solid tumors and possibly extends to hematological disorders. Further cellular and molecular studies are needed to determine which cells in CLL patients are targeted by cold plasma or PTS.
  • Item
    Ex Vivo Exposure of Human Melanoma Tissue to Cold Physical Plasma Elicits Apoptosis and Modulates Inflammation
    (Basel : MDPI, 2020) Bekeschus, Sander; Moritz, Juliane; Helfrich, Iris; Boeckmann, Lars; Weltmann, Klaus-Dieter; Emmert, Steffen; Metelmann, Hans-Robert; Stoffels, Ingo; von Woedtke, Thomas
    Cutaneous melanoma is the most aggressive type of skin cancer with a not-sufficient clinical outcome. High tumor mutation rates often hamper a remedial treatment, creating the need for palliative care in many patients. To reduce pain and burden, local palliation often includes cryo-ablation, immunotherapy via injection of IL2, or electrochemotherapy. Yet, a fraction of patients and lesions do not respond to those therapies. To reach even these resistances in a redox-mediated way, we treated skin biopsies from human melanoma ex vivo with cold physical plasma (kINPen MED plasma jet). This partially ionized gas generates a potent mixture of reactive oxygen species (ROS). Physical plasmas have been shown to be potent antitumor agents in preclinical melanoma and clinical head and neck cancer research. The innovation of this technology lies in its ease-of-use without anesthesia, as the “cold” plasma temperature of the kINPen MED does not exceed 37 °C. In metastatic melanoma skin biopsies from six patients, we identified a marked increase of apoptosis with plasma treatment ex vivo. This had an impact on the chemokine/cytokine profile of the cultured biopsies, e.g., three of six patient-derived biopsy supernatants showed an apparent decrease in VEGF compared to non-plasma treated specimens. Moreover, the baseline release levels of 24 chemokines/cytokines investigated may serve as a useful tool for future research on melanoma skin biopsy treatments. Our findings suggest a clinically useful role of cold physical plasma therapy in palliation of cutaneous melanoma lesions, possibly in a combinatory setting with other immune therapies.
  • Item
    Multimodal imaging techniques to evaluate the anticancer effect of cold atmospheric pressure plasma
    (Basel : MDPI, 2021) Kordt, Marcel; Trautmann, Isabell; Schlie, Christin; Lindner, Tobias; Stenzel, Jan; Schildt, Anna; Boeckmann, Lars; Bekeschus, Sander; Kurth, Jens; Krause, Bernd J.; Vollmar, Brigitte; Grambow, Eberhard
    Background: Skin cancer is the most frequent cancer worldwide and is divided into non-melanoma skin cancer, including basal cell carcinoma, as well as squamous cell carcinoma (SCC) and malignant melanoma (MM). Methods: This study evaluates the effects of cold atmospheric pressure plasma (CAP) on SCC and MM in vivo, employing a comprehensive approach using multi-modal imaging techniques. Longitudinal MR and PET/CT imaging were performed to determine the anatomic and metabolic tumour volume over three‐weeks in vivo. Additionally, the formation of reactive species after CAP treatment was assessed by non‐invasive chemiluminescence imaging of L‐012. Histological analysis and immunohistochemical staining for Ki‐67, ApopTag®, F4/80, CAE, and CD31, as well as protein expression of PCNA, caspase‐3 and cleaved‐caspase‐3, were performed to study proliferation, apoptosis, inflammation, and angiogenesis in CAP‐treated tumours. Results: As the main result, multimodal in vivo imaging revealed a substantial reduction in tumour growth and an increase in reactive species after CAP treatment, in comparison to untreated tu-mours. In contrast, neither the markers for apoptosis, nor the metabolic activity of both tumour entities was affected by CAP. Conclusions: These findings propose CAP as a potential adjuvant therapy option to established standard therapies of skin cancer.
  • Item
    Cold Atmospheric Pressure Plasma in Wound Healing and Cancer Treatment
    (Basel : MDPI, 2020) Boeckmann, Lars; Schäfer, Mirijam; Bernhardt, Thoralf; Semmler, Marie Luise; Jung, Ole; Ojak, Gregor; Fischer, Tobias; Peters, Kirsten; Nebe, Barbara; Müller-Hilke, Brigitte; Seebauer, Christian; Bekeschus, Sander; Emmert, Steffen
    Plasma medicine is gaining increasing attention and is moving from basic research into clinical practice. While areas of application are diverse, much research has been conducted assessing the use of cold atmospheric pressure plasma (CAP) in wound healing and cancer treatment—two applications with entirely different goals. In wound healing, a tissue-stimulating effect is intended, whereas cancer therapy aims at killing malignant cells. In this review, we provide an overview of the latest clinical and some preclinical research on the efficacy of CAP in wound healing and cancer therapy. Furthermore, we discuss the current understanding of molecular signaling mechanisms triggered by CAP that grant CAP its antiseptic and tissue regenerating or anti-proliferative and cell death-inducing properties. For the efficacy of CAP in wound healing, already substantial evidence from clinical studies is available, while evidence for therapeutic effects of CAP in oncology is mainly from in vitro and in vivo animal studies. Efforts to elucidate the mode of action of CAP suggest that different components, such as ultraviolet (UV) radiation, electromagnetic fields, and reactive species, may act synergistically, with reactive species being regarded as the major effector by modulating complex and concentration-dependent redox signaling pathways.
  • Item
    Gas plasma-treated prostate cancer cells augment myeloid cell activity and cytotoxicity
    (Basel : MDPI, 2020) Bekeschus, Sander; Ressel, Verena; Freund, Eric; Gelbrich, Nadine; Mustea, Alexander; Stope, Matthias B.
    Despite recent improvements in cancer treatment, with many of them being related to foster antitumor immunity, tumor-related deaths continue to be high. Novel avenues are needed to complement existing therapeutic strategies in oncology. Medical gas plasma technology recently gained attention due to its antitumor activity. Gas plasmas act via the local deposition of a plethora of reactive oxygen species (ROS) that promote the oxidative cancer cell death. The immunological consequences of plasma-mediated tumor cell death are only poorly understood, however. To this end, we exposed two prostate cancer cell lines (LNCaP, PC3) to gas plasma in vitro, and investigated the immunomodulatory effects of the supernatants in as well as of direct co-culturing with two human myeloid cell lines (THP-1, HL-60). After identifying the cytotoxic action of the kINPen plasma jet, the supernatants of plasma-treated prostate cancer cells modulated myeloid cell-related mitochondrial ROS production and their metabolic activity, proliferation, surface marker expression, and cytokine release. Direct co-culture amplified differentiation-like surface marker expression in myeloid cells and promoted their antitumor-toxicity in the gas plasma over the untreated control conditions. The results suggest that gas plasma-derived ROS not only promote prostate cancer cell death but also augment myeloid cell activity and cytotoxicity. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Medical Gas Plasma Treatment in Head and Neck Cancer—Challenges and Opportunities
    (Basel : MDPI, 2020) Berner, Julia; Seebauer, Christian; Sagwal, Sanjeev Kumar; Boeckmann, Lars; Emmert, Steffen; Metelmann, Hans-Robert; Bekeschus, Sander
    Despite progress in oncotherapy, cancer is still among the deadliest diseases in the Western world, emphasizing the demand for novel treatment avenues. Cold physical plasma has shown antitumor activity in experimental models of, e.g., glioblastoma, colorectal cancer, breast carcinoma, osteosarcoma, bladder cancer, and melanoma in vitro and in vivo. In addition, clinical case reports have demonstrated that physical plasma reduces the microbial contamination of severely infected tumor wounds and ulcerations, as is often seen with head and neck cancer patients. These antimicrobial and antitumor killing properties make physical plasma a promising tool for the treatment of head and neck cancer. Moreover, this type of cancer is easily accessible from the outside, facilitating the possibility of several rounds of topical gas plasma treatment of the same patient. Gas plasma treatment of head and neck cancer induces diverse effects via the deposition of a plethora of reactive oxygen and nitrogen species that mediate redox-biochemical processes, and ultimately, selective cancer cell death. The main advantage of medical gas plasma treatment in oncology is the lack of adverse events and significant side effects compared to other treatment modalities, such as surgical approaches, chemotherapeutics, and radiotherapy, making plasma treatment an attractive strategy for the adjuvant and palliative treatment of head and neck cancer. This review outlines the state of the art and progress in investigating physical plasma as a novel treatment modality in the therapy of head and neck squamous cell carcinoma.