Search Results

Now showing 1 - 10 of 14
  • Item
    Investigating the Mutagenicity of a Cold Argon-Plasma Jet in an HET-MN Model
    (San Francisco, California, US : PLOS, 2016) Kluge, Susanne; Bekeschus, Sander; Bender, Claudia; Benkhai, Hicham; Sckell, Axel; Below, Harald; Stope, Matthias B.; Kramer, Axel; Yousfi, Mohammed
    Objective: So-called cold physical plasmas for biomedical applications generate reactive oxygen and nitrogen species and the latter can trigger DNA damage at high concentrations. Therefore, the mutagenic risks of a certified atmospheric pressure argon plasma jet (kINPen MED) and its predecessor model (kINPen 09) were assessed. Methods: Inner egg membranes of fertilized chicken eggs received a single treatment with either the kINPen 09 (1.5, 2.0, or 2.5 min) or the kINPen MED (3, 4, 5, or 10 min). After three days of incubation, blood smears (panoptic May-Grünwald-Giemsa stain) were performed, and 1000 erythrocytes per egg were evaluated for the presence of polychromatic and normochromic nuclear staining as well as nuclear aberrations and binucleated cells (hen’s egg test for micronuclei induction, HET-MN). At the same time, the embryo mortality was documented. For each experiment, positive controls (cyclophosphamide and methotrexate) and negative controls (NaCl-solution, argon gas) were included. Additionally, the antioxidant potential of the blood plasma was assessed by ascorbic acid oxidation assay after treatment. Results: For both plasma sources, there was no evidence of genotoxicity, although at the longest plasma exposure time of 10 min the mortality of the embryos exceeded 40%. The antioxidant potential in the egg’s blood plasma was not significantly reduced immediately (p = 0.32) or 1 h (p = 0.19) post exposure to cold plasma. Conclusion: The longest plasma treatment time with the kINPen MED was 5–10 fold above the recommended limit for treatment of chronic wounds in clinics. We did not find mutagenic effects for any plasma treatment time using the either kINPen 09 or kINPen MED. The data provided with the current study seem to confirm the lack of a genotoxic potential suggesting that a veterinary or clinical application of these argon plasma jets does not pose mutagenic risks.
  • Item
    Cold Atmospheric Plasma in the Treatment of Osteosarcoma
    (Basel : Molecular Diversity Preservation International, 2017-9-19) Gümbel, Denis; Bekeschus, Sander; Gelbrich, Nadine; Napp, Matthias; Ekkernkamp, Axel; Kramer, Axel; Stope, Matthias B.
    Human osteosarcoma (OS) is the most common primary malignant bone tumor occurring most commonly in adolescents and young adults. Major improvements in disease-free survival have been achieved by implementing a combination therapy consisting of radical surgical resection of the tumor and systemic multi-agent chemotherapy. However, long-term survival remains poor, so novel targeted therapies to improve outcomes for patients with osteosarcoma remains an area of active research. This includes immunotherapy, photodynamic therapy, or treatment with nanoparticles. Cold atmospheric plasma (CAP), a highly reactive (partially) ionized physical state, has been shown to inherit a significant anticancer capacity, leading to a new field in medicine called “plasma oncology.” The current article summarizes the potential of CAP in the treatment of human OS and reviews the underlying molecular mode of action.
  • Item
    Devitalization of Glioblastoma Cancer Cells by Non-invasive Physical Plasma: Modulation of Proliferative Signalling Cascades
    (Attiki : [Verlag nicht ermittelbar], 2022) Lehmann, Sebastian; Bien-Möller, Sandra; Marx, Sascha; Bekeschus, Sander; Schroeder, Henry W.S.; Mustea, Alexander; Stope, Matthias B.
    Background/Aim: Glioblastoma (GBM) is the most common and most lethal type of cancer of the central nervous system in adults. Despite aggressive treatment, which is based on surgical resection, if possible, followed by radiation and chemotherapy, a high recurrence rate and therapy resistance is observed. Thus, additional innovative therapies are urgently needed to improve the poor median survival of only 15 months. Treatment of solid tumours with non-invasive physical plasma (NIPP) represents such a novel and innovative anticancer procedure. Materials and Methods: In this study, we investigated the effect of NIPP, an ionized argon gas, on the in vitro growth of human GBM cell lines, LN-18 and U-87 MG. Proliferation was measured by live cell count. Subsequently, proliferative factors were analysed at the level of nucleic acids (polymerase chain reaction) and proteins (western blotting). Results: For both GBM lines, a treatment time-dependent decrease in growth was observed compared to controls. Additionally, NIPP treatment resulted in reduced rates of AKT serine/threonine kinase 1 (AKT1) and extracellular-regulated kinase 1/2 ERK1/2 expression, whereas expression of p21, proliferating cell nuclear antigen, and heat-shock proteins 90α and 90β was not affected. In both cell lines, a strong increase in expression of tumour-suppressive microRNA-1 (miR-1) was detected after exposure to NIPP. Conclusion: Our results demonstrated that NIPP is able to efficiently attenuate growth of GBM cells and suggest AKT1, ERK1/2 and miR-1 to be pivotal factors of NIPP-modulated cellular signalling. Translated into the clinical setting, NIPP may represent a promising option for the treatment of GBM.
  • Item
    Gas Plasma Exposure of Glioblastoma Is Cytotoxic and Immunomodulatory in Patient-Derived GBM Tissue
    (Basel : MDPI, 2022) Bekeschus, Sander; Ispirjan, Mikael; Freund, Eric; Kinnen, Frederik; Moritz, Juliane; Saadati, Fariba; Eckroth, Jacqueline; Singer, Debora; Stope, Matthias B.; Wende, Kristian; Ritter, Christoph A.; Schroeder, Henry W. S.; Marx, Sascha
    Glioblastoma multiforme (GBM) is the most common primary malignant adult brain tumor. Therapeutic options for glioblastoma are maximal surgical resection, chemotherapy, and radiotherapy. Therapy resistance and tumor recurrence demand, however, new strategies. Several experimental studies have suggested gas plasma technology, a partially ionized gas that generates a potent mixture of reactive oxygen species (ROS), as a future complement to the existing treatment arsenal. However, aspects such as immunomodulation, inflammatory consequences, and feasibility studies using GBM tissue have not been addressed so far. In vitro, gas plasma generated ROS that oxidized cells and led to a treatment time-dependent metabolic activity decline and G2 cell cycle arrest. In addition, peripheral blood-derived monocytes were co-cultured with glioblastoma cells, and immunomodulatory surface expression markers and cytokine release were screened. Gas plasma treatment of either cell type, for instance, decreased the expression of the M2-macrophage marker CD163 and the tolerogenic molecule SIGLEC1 (CD169). In patient-derived GBM tissue samples exposed to the plasma jet kINPen ex vivo, apoptosis was significantly increased. Quantitative chemokine/cytokine release screening revealed gas plasma exposure to significantly decrease 5 out of 11 tested chemokines and cytokines, namely IL-6, TGF-β, sTREM-2, b-NGF, and TNF-α involved in GBM apoptosis and immunomodulation. In summary, the immuno-modulatory and proapoptotic action shown in this study might be an important step forward to first clinical observational studies on the future discovery of gas plasma technology’s potential in neurosurgery and neuro-oncology especially in putative adjuvant or combinatory GBM treatment settings.
  • Item
    Heat Shock Protein 27 Affects Myeloid Cell Activation and Interaction with Prostate Cancer Cells
    (Basel : MDPI, 2022) Singer, Debora; Ressel, Verena; Stope, Matthias B.; Bekeschus, Sander
    Heat shock proteins are cytoprotective molecules induced by environmental stresses. The small heat shock protein 27 (Hsp27) is highly expressed under oxidative stress conditions, mediating anti-oxidative effects and blocking apoptosis. Since medical gas plasma treatment subjects cancer cells to a multitude of reactive oxygen species (ROS), inducing apoptosis and immunomodulation, probable effects of Hsp27 should be investigated. To this end, we quantified the extracellular Hsp27 in two prostate cancer cell lines (LNCaP, PC-3) after gas plasma-induced oxidative stress, showing a significantly enhanced release. To investigate immunomodulatory effects, two myeloid cell lines (THP-1 and HL-60) were also exposed to Hsp27. Only negligible effects on viability, intracellular oxidative milieu, and secretion profiles of the myeloid cells were found when cultured alone. Interestingly, prostate cancer-myeloid cell co-cultures showed altered secretion profiles with a significant decrease in vascular endothelial growth factor (VEGF) release. Furthermore, the myeloid surface marker profiles were changed, indicating an enhanced differentiation in co-culture upon Hsp27 treatment. Finally, we investigated morphological changes, proliferation, and interaction with prostate cancer cells, and found significant alterations in the myeloid cells, supporting the tendency to differentiate. Collectively, our results suggest an ambiguous effect of Hsp27 on myeloid cells in the presence of prostate cancer cells which needs to be further investigated.
  • Item
    An Innovative Therapeutic Option for the Treatment of Skeletal Sarcomas: Elimination of Osteo- and Ewing’s Sarcoma Cells Using Physical Gas Plasma
    (Basel : Molecular Diversity Preservation International, 2020) Jacoby, Josephine M.; Strakeljahn, Silas; Nitsch, Andreas; Bekeschus, Sander; Hinz, Peter; Mustea, Alexander; Ekkernkamp, Axel; Tzvetkov, Mladen V.; Haralambiev, Lyubomir; Stope, Matthias B.
    Osteosarcoma and Ewing’s sarcoma are the most common malignant bone tumors. Conventional therapies such as polychemotherapy, local surgery, and radiotherapy improve the clinical outcome for patients. However, they are accompanied by acute and chronic side effects that affect the quality of life of patients, motivating novel research lines on therapeutic options for the treatment of sarcomas. Previous experimental work with physical plasma operated at body temperature (cold atmospheric plasma, CAP) demonstrated anti-oncogenic effects on different cancer cell types. This study investigated the anti-cancer effect of CAP on two bone sarcoma entities, osteosarcoma and Ewing’s sarcoma, which were represented by four cell lines (U2-OS, MNNG/HOS, A673, and RD-ES). A time-dependent anti-proliferative effect of CAP on all cell lines was observed. CAP-induced alterations in cell membrane functionality were detected by performing a fluorescein diacetate (FDA) release assay and an ATP release assay. Additionally, modifications of the cell membrane and modifications in the actin cytoskeleton composition were examined using fluorescence microscopy monitoring dextran-uptake assay and G-/F-actin distribution. Furthermore, the CAP-induced induction of apoptosis was determined by TUNEL and active caspases assays. The observations suggest that a single CAP treatment of bone sarcoma cells may have significant anti-oncogenic effects and thus may be a promising extension to existing applications. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Gas plasma-treated prostate cancer cells augment myeloid cell activity and cytotoxicity
    (Basel : MDPI, 2020) Bekeschus, Sander; Ressel, Verena; Freund, Eric; Gelbrich, Nadine; Mustea, Alexander; Stope, Matthias B.
    Despite recent improvements in cancer treatment, with many of them being related to foster antitumor immunity, tumor-related deaths continue to be high. Novel avenues are needed to complement existing therapeutic strategies in oncology. Medical gas plasma technology recently gained attention due to its antitumor activity. Gas plasmas act via the local deposition of a plethora of reactive oxygen species (ROS) that promote the oxidative cancer cell death. The immunological consequences of plasma-mediated tumor cell death are only poorly understood, however. To this end, we exposed two prostate cancer cell lines (LNCaP, PC3) to gas plasma in vitro, and investigated the immunomodulatory effects of the supernatants in as well as of direct co-culturing with two human myeloid cell lines (THP-1, HL-60). After identifying the cytotoxic action of the kINPen plasma jet, the supernatants of plasma-treated prostate cancer cells modulated myeloid cell-related mitochondrial ROS production and their metabolic activity, proliferation, surface marker expression, and cytokine release. Direct co-culture amplified differentiation-like surface marker expression in myeloid cells and promoted their antitumor-toxicity in the gas plasma over the untreated control conditions. The results suggest that gas plasma-derived ROS not only promote prostate cancer cell death but also augment myeloid cell activity and cytotoxicity. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Elevated H2AX Phosphorylation Observed with kINPen Plasma Treatment Is Not Caused by ROS-Mediated DNA Damage but Is the Consequence of Apoptosis
    (London: Hindawi, 2019) Bekeschus, Sander; Schütz, Clarissa S.; Nießner, Felix; Wende, Kristian; Weltmann, Klaus-Dieter; Gelbrich, Nadine; von Woedtke, Thomas; Schmidt, Anke; Stope, Matthias B.
    Phosphorylated histone 2AX (γH2AX) is a long-standing marker for DNA double-strand breaks (DSBs) from ionizing radiation in the field of radiobiology. This led to the perception of γH2AX being a general marker of direct DNA damage with the treatment of other agents such as low-dose exogenous ROS that unlikely act on cellular DNA directly. Cold physical plasma confers biomedical effects majorly via release of reactive oxygen and nitrogen species (ROS). In vitro, increase of γH2AX has often been observed with plasma treatment, leading to the conclusion that DNA damage is a direct consequence of plasma exposure. However, increase in γH2AX also occurs during apoptosis, which is often observed with plasma treatment as well. Moreover, it must be questioned if plasma-derived ROS can reach into the nucleus and still be reactive enough to damage DNA directly. We investigated γH2AX induction in a lymphocyte cell line upon ROS exposure (plasma, hydrogen peroxide, or hypochlorous acid) or UV-B light. Cytotoxicity and γH2AX induction was abrogated by the use of antioxidants with all types of ROS treatment but not UV radiation. H2AX phosphorylation levels were overall independent of analyzing either all nucleated cells or segmenting γH2AX phosphorylation for each cell cycle phase. SB202190 (p38-MAPK inhibitor) and Z-VAD-FMK (pan-caspase inhibitor) significantly inhibited γH2AX induction upon ROS but not UV treatment. Finally, and despite γH2AX induction, UV but not plasma treatment led to significantly increased micronucleus formation, which is a functional read-out of genotoxic DNA DSBs. We conclude that plasma-mediated and low-ROS γH2AX induction depends on caspase activation and hence is not the cause but consequence of apoptosis induction. Moreover, we could not identify lasting mutagenic effects with plasma treatment despite phosphorylation of H2AX.
  • Item
    New Approach against Chondrosoma Cells—Cold Plasma Treatment Inhibits Cell Motility and Metabolism, and Leads to Apoptosis
    (Basel : MDPI, 2022) Nitsch, Andreas; Strakeljahn, Silas; Jacoby, Josephine M.; Sieb, Konrad F.; Mustea, Alexander; Bekeschus, Sander; Ekkernkamp, Axel; Stope, Matthias B.; Haralambiev, Lyubomir
    (1) Background: Chondrosarcoma (CS) is a malignant primary bone tumor with a carti-laginous origin. Its slow cell division and severely restricted vascularization are responsible for its poor responsiveness to chemotherapy and radiotherapy. The decisive factor for the prognosis of CS patients is the only adequate therapy—surgical resection. Cold atmospheric pressure plasma (CAP) is emerging as a new option in anti-cancer therapy. Its effect on chondrosarcomas has been poorly investigated. (2) Methods: Two CS cell lines—SW 1353 and CAL 78—were used. Various assays, such as cell growth kinetics, glucose uptake, and metabolic activity assay, along with two different apoptosis assays were performed after CAP treatment. A radius cell migration assay was used to examine cell motility. (3) Results: Both cell lines showed different growth behavior, which was taken into account when using the assays. After CAP treatment, a reduction in metabolic activity was observed in both cell lines. The immediate effect of CAP showed a reduction in cell numbers and in influence on this cell line’s growth rate. The measurement of the glucose concentration in the cell culture medium showed an increase after CAP treatment. Live-dead cell imaging shows an increase in the proportion of dead cells over the incubation time for both cell lines. There was a significant increase in apoptotic signals after 48 h and 72 h for both cell lines in both assays. The migration assay showed that CAP treatment inhibited the motility of chondrosarcoma cells. The effects in all experiments were related to the duration of CAP exposure. (4) Conclusions: The CAP treatment of CS cells inhibits their growth, motility, and metabolism by initiating apoptotic processes.
  • Item
    Cold Atmospheric Plasma Treatment of Chondrosarcoma Cells Affects Proliferation and Cell Membrane Permeability
    (Basel : Molecular Diversity Preservation International, 2020) Haralambiev, Lyubomir; Nitsch, Andreas; Jacoby, Josephine M.; Strakeljahn, Silas; Bekeschus, Sander; Mustea, Alexander; Ekkernkamp, Axel; Stope, Matthias B.
    Chondrosarcoma is the second most common malign bone tumor in adults. Surgical resection of the tumor is recommended because of its resistance to clinical treatment such as chemotherapy and radiation therapy. Thus, the prognosis for patients mainly depends on sufficient surgical resection. Due to this, research on alternative therapies is needed. Cold atmospheric plasma (CAP) is an ionized gas that contains various reactive species. Previous studies have shown an anti-oncogenic potential of CAP on different cancer cell types. The current study examined the effects of treatment with CAP on two chondrosarcoma cell lines (CAL-78, SW1353). Through proliferation assay, the cell growth after CAP-treatment was determined. A strong antiproliferative effect for both cell lines was detected. By fluorescein diacetate (FDA) assay and ATP release assay, alterations in the cell membrane and associated translocation of low molecular weight particles through the cytoplasmic membrane were observed. In supernatant, the non-membrane-permeable FDA and endogenously synthesized ATP detected suggest an increased membrane permeability after CAP treatment. Similar results were shown by the dextran-uptake assay. Furthermore, fluorescence microscopic G-/F-actin assay was performed. G-and F-actin were selectively dyed, and the ratio was measured. The presented results indicate CAP-induced changes in cell membrane function and possible alterations in actin-cytoskeleton, which may contribute to the antiproliferative effects of CAP. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.