Search Results

Now showing 1 - 2 of 2
  • Item
    A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol
    (Weinheim : Wiley-VCH, 2016-12-2) Andérez-Fernández, María; Vogt, Lydia K.; Fischer, Steffen; Zhou, Wei; Jiao, Haijun; Garbe, Marcel; Elangovan, Saravanakumar; Junge, Kathrin; Junge, Henrik; Ludwig, Ralf; Beller, Matthias
    For the first time, structurally defined manganese pincer complexes catalyze the dehydrogenation of aqueous methanol to hydrogen and carbon dioxide, which is a transformation of interest with regard to the implementation of a hydrogen and methanol economy. Excellent long-term stability was demonstrated for the Mn-PNPiPr catalyst, as a turnover of more than 20 000 was reached. In addition to methanol, other important hydrogen carriers were also successfully dehydrogenated.
  • Item
    Efficient Synthesis of Novel Plasticizers by Direct Palladium-Catalyzed Di- or Multi-carbonylations
    (Weinheim : Wiley-VCH, 2022) Hu, Yuya; Sang, Rui; Vroemans, Robby; Mollaert, Guillaume; Razzaq, Rauf; Neumann, Helfried; Junge, Henrik; Franke, Robert; Jackstell, Ralf; Maes, Bert U. W.; Beller, Matthias
    Diesters are of fundamental importance in the chemical industry and are used for many applications, e.g. as plasticizers, surfactants, emulsifiers, and lubricants. Herein, we present a straightforward and efficient method for the selective synthesis of diesters via palladium-catalyzed direct carbonylation of di- or polyols with readily available alkenes. Key-to-success is the use of a specific palladium catalyst with the “built-in-base” ligand L16 providing esterification of all alcohols and a high n/iso ratio. The synthesized diesters were evaluated as potential plasticizers in PVC films by measuring the glass transition temperature (Tg) via differential scanning calorimetry (DSC).