Search Results

Now showing 1 - 4 of 4
  • Item
    A General Regioselective Synthesis of Alcohols by Cobalt-Catalyzed Hydrogenation of Epoxides
    (Weinheim : Wiley-VCH, 2020) Liu, Weiping; Leischner, Thomas; Li, Wu; Junge, Kathrin; Beller, Matthias
    A straightforward methodology for the synthesis of anti-Markovnikov-type alcohols is presented. By using a specific cobalt triphos complex in the presence of Zn(OTf)2 as an additive, the hydrogenation of epoxides proceeds with high yields and selectivities. The described protocol shows a broad substrate scope, including multi-substituted internal and terminal epoxides, as well as a good functional-group tolerance. Various natural-product derivatives, including steroids, terpenoids, and sesquiterpenoids, gave access to the corresponding alcohols in moderate-to-excellent yields. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Cascade Synthesis of Pyrroles from Nitroarenes with Benign Reductants Using a Heterogeneous Cobalt Catalyst
    (Weinheim : Wiley-VCH, 2020) Ryabchuk, Pavel; Leischner, Thomas; Kreyenschulte, Carsten; Spannenberg, Anke; Junge, Kathrin; Beller, Matthias
    A bifunctional 3d-metal catalyst for the cascade synthesis of diverse pyrroles from nitroarenes is presented. The optimal catalytic system Co/NGr-C@SiO2-L is obtained by pyrolysis of a cobalt-impregnated composite followed by subsequent selective leaching. In the presence of this material, (transfer) hydrogenation of easily available nitroarenes and subsequent Paal–Knorr/Clauson-Kass condensation provides >40 pyrroles in good to high yields using dihydrogen, formic acid, or a CO/H2O mixture (WGSR conditions) as reductant. In addition to the favorable step economy, this straightforward domino process does not require any solvents or external co-catalysts. The general synthetic utility of this methodology was demonstrated on a variety of functionalized substrates including the preparation of biologically active and pharmaceutically relevant compounds, for example, (+)-Isamoltane. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Recent Advances in Catalytic Hydrosilylations: Developments beyond Traditional Platinum Catalysts
    (Weinheim : Wiley-VCH, 2021) de Almeida, Leandro Duarte; Wang, Hongli; Junge, Kathrin; Cui, Xinjiang; Beller, Matthias
    Hydrosilylation reactions, which allow the addition of Si−H to C=C/C≡C bonds, are typically catalyzed by homogeneous noble metal catalysts (Pt, Rh, Ir, and Ru). Although excellent activity and selectivity can be obtained, the price, purification, and metal residues of these precious catalysts are problems in the silicone industry. Thus, a strong interest in more sustainable catalysts and for more economic processes exists. In this respect, recently disclosed hydrosilylations using catalysts based on earth-abundant transition metals, for example, Fe, Co, Ni, and Mn, and heterogeneous catalysts (supported nanoparticles and single-atom sites) are noteworthy. This minireview describes the recent advances in this field. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Selective Acceptorless Dehydrogenation of Primary Amines to Imines by Core-Shell Cobalt Nanoparticles
    (Weinheim : Wiley-VCH, 2020) Cui, Xinjiang; Li, Wu; Junge, Kathrin; Fei, Zhaofu; Beller, Matthias; Dyson, Paul J.
    Core–shell nanocatalysts are attractive due to their versatility and stability. Here, we describe cobalt nanoparticles encapsulated within graphitic shells prepared via the pyrolysis of a cationic poly-ionic liquid (PIL) with a cobalt(II) chloride anion. The resulting material has a core–shell structure that displays excellent activity and selectivity in the self-dehydrogenation and hetero-dehydrogenation of primary amines to their corresponding imines. Furthermore, the catalyst exhibits excellent activity in the synthesis of secondary imines from substrates with various reducible functional groups (C=C, C≡C and C≡N) and amino acid derivatives. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.