Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol

2016-12-2, Andérez-Fernández, María, Vogt, Lydia K., Fischer, Steffen, Zhou, Wei, Jiao, Haijun, Garbe, Marcel, Elangovan, Saravanakumar, Junge, Kathrin, Junge, Henrik, Ludwig, Ralf, Beller, Matthias

For the first time, structurally defined manganese pincer complexes catalyze the dehydrogenation of aqueous methanol to hydrogen and carbon dioxide, which is a transformation of interest with regard to the implementation of a hydrogen and methanol economy. Excellent long-term stability was demonstrated for the Mn-PNPiPr catalyst, as a turnover of more than 20 000 was reached. In addition to methanol, other important hydrogen carriers were also successfully dehydrogenated.

Loading...
Thumbnail Image
Item

Highly active and selective photochemical reduction of CO2 to CO using molecular-defined cyclopentadienone iron complexes

2015, Rosas-Hernández, Alonso, Alsabeh, Pamela G., Barsch, Enrico, Junge, Hernrik, Ludwig, Ralf, Beller, Matthias

Herein, we report highly active (cyclopentadienone)iron–tricarbonyl complexes for CO2 photoreduction using visible light with an Ir complex as photosensitizer and TEOA as electron/proton donor. Turnover numbers (TON) of ca. 600 (1 h) with initial turnover frequencies (TOF) up to 22.2 min−1 were observed. Operando FTIR measurements allowed for the proposal of a plausible mechanism for catalyst activation.