Search Results

Now showing 1 - 7 of 7
  • Item
    Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines
    ([London] : Nature Publishing Group UK, 2018) Senthamarai, Thirusangumurugan; Murugesan, Kathiravan; Schneidewind, Jacob; Kalevaru, Narayana V.; Baumann, Wolfgang; Neumann, Helfried; Kamer, Paul C. J.; Beller, Matthias; Jagadeesh, Rajenahally V.
    The production of primary benzylic and aliphatic amines, which represent essential feedstocks and key intermediates for valuable chemicals, life science molecules and materials, is of central importance. Here, we report the synthesis of this class of amines starting from carbonyl compounds and ammonia by Ru-catalyzed reductive amination using H2. Key to success for this synthesis is the use of a simple RuCl2(PPh3)3 catalyst that empowers the synthesis of >90 various linear and branched benzylic, heterocyclic, and aliphatic amines under industrially viable and scalable conditions. Applying this catalyst, −NH2 moiety has been introduced in functionalized and structurally diverse compounds, steroid derivatives and pharmaceuticals. Noteworthy, the synthetic utility of this Ru-catalyzed amination protocol has been demonstrated by upscaling the reactions up to 10 gram-scale syntheses. Furthermore, in situ NMR studies were performed for the identification of active catalytic species. Based on these studies a mechanism for Ru-catalyzed reductive amination is proposed.
  • Item
    Monodisperse nickel-nanoparticles for stereo- and chemoselective hydrogenation of alkynes to alkenes
    (Amsterdam [u.a.] : Elsevier, 2019) Murugesan, Kathiravan; Alshammari, Ahmad S.; Sohail, Manzar; Beller, Matthias; Jagadeesh, Rajenahally V.
    Here, we report the use of monosaccharides for the preparation of novel nickel nanoparticles (NP), which constitute selective hydrogenation catalysts. For example, immobilization of fructose and Ni(OAc)2 on silica and subsequent pyrolysis under inert atmosphere produced graphitic shells encapsulated Ni-NP with uniform size and distribution. Interestingly, fructose acts as structure controlling compound to generate specific graphitic layers and the formation of monodisperse NP. The resulting stable and reusable catalysts allow for stereo- and chemoselective semihydrogenation of functionalized and structurally diverse alkynes in high yields and selectivity. © 2019 The Author(s)
  • Item
    Homogeneous cobalt-catalyzed reductive amination for synthesis of functionalized primary amines
    ([London] : Nature Publishing Group UK, 2019) Murugesan, Kathiravan; Wei, Zhihong; Chandrashekhar, Vishwas G.; Neumann, Helfried; Spannenberg, Anke; Jiao, Haijun; Beller, Matthias; Jagadeesh, Rajenahally V.
    The development of earth abundant 3d metal-based catalysts continues to be an important goal of chemical research. In particular, the design of base metal complexes for reductive amination to produce primary amines remains as challenging. Here, we report the combination of cobalt and linear-triphos (bis(2-diphenylphosphinoethyl)phenylphosphine) as the molecularly-defined non-noble metal catalyst for the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds, gaseous ammonia and hydrogen in good to excellent yields. Noteworthy, this cobalt catalyst exhibits high selectivity and as a result the -NH2 moiety is introduced in functionalized and structurally diverse molecules. An inner-sphere mechanism on the basis of the mono-cationic [triphos-CoH]+ complex as active catalyst is proposed and supported with density functional theory computation on the doublet state potential free energy surface and H2 metathesis is found as the rate-determining step.
  • Item
    General and selective synthesis of primary amines using Ni-based homogeneous catalysts
    (Cambridge : RSC, 2020) Murugesan, Kathiravan; Wei, Zhihong; Chandrashekhar, Vishwas G.; Jiao, Haijun; Beller, Matthias; Jagadeesh, Rajenahally V.
    The development of base metal catalysts for industrially relevant amination and hydrogenation reactions by applying abundant and atom economical reagents continues to be important for the cost-effective and sustainable synthesis of amines which represent highly essential chemicals. In particular, the synthesis of primary amines is of central importance because these compounds serve as key precursors and central intermediates to produce value-added fine and bulk chemicals as well as pharmaceuticals, agrochemicals and materials. Here we report a Ni-triphos complex as the first Ni-based homogeneous catalyst for both reductive amination of carbonyl compounds with ammonia and hydrogenation of nitroarenes to prepare all kinds of primary amines. Remarkably, this Ni-complex enabled the synthesis of functionalized and structurally diverse benzylic, heterocyclic and aliphatic linear and branched primary amines as well as aromatic primary amines starting from inexpensive and easily accessible carbonyl compounds (aldehydes and ketones) and nitroarenes using ammonia and molecular hydrogen. This Ni-catalyzed reductive amination methodology has been applied for the amination of more complex pharmaceuticals and steroid derivatives. Detailed DFT computations have been performed for the Ni-triphos based reductive amination reaction, and they revealed that the overall reaction has an inner-sphere mechanism with H2metathesis as the rate-determining step. © The Royal Society of Chemistry 2020.
  • Item
    Cobalt-based nanoparticles prepared from MOF-carbon templates as efficient hydrogenation catalysts
    (Cambridge : RSC, 2018) Murugesan, Kathiravan; Senthamarai, Thirusangumurugan; Sohail, Manzar; Alshammari, Ahmad S.; Pohl, Marga-Martina; Beller, Matthias; Jagadeesh, Rajenahally V.
    The development of efficient and selective nanostructured catalysts for industrially relevant hydrogenation reactions continues to be an actual goal of chemical research. In particular, the hydrogenation of nitriles and nitroarenes is of importance for the production of primary amines, which constitute essential feedstocks and key intermediates for advanced chemicals, life science molecules and materials. Herein, we report the preparation of graphene shell encapsulated Co3O4- and Co-nanoparticles supported on carbon by the template synthesis of cobalt-terephthalic acid MOF on carbon and subsequent pyrolysis. The resulting nanoparticles create stable and reusable catalysts for selective hydrogenation of functionalized and structurally diverse aromatic, heterocyclic and aliphatic nitriles, and as well as nitro compounds to primary amines (>65 examples). The synthetic and practical utility of this novel non-noble metal-based hydrogenation protocol is demonstrated by upscaling several reactions to multigram-scale and recycling of the catalyst.
  • Item
    A General Catalyst Based on Cobalt Core–Shell Nanoparticles for the Hydrogenation of N-Heteroarenes Including Pyridines
    (Weinheim : Wiley-VCH, 2020) Murugesan, Kathiravan; Chandrashekhar, Vishwas G.; Kreyenschulte, Carsten; Beller, Matthias; Jagadeesh, Rajenahally V.
    Herein, we report the synthesis of specific silica-supported Co/Co3O4 core–shell based nanoparticles prepared by template synthesis of cobalt-pyromellitic acid on silica and subsequent pyrolysis. The optimal catalyst material allows for general and selective hydrogenation of pyridines, quinolines, and other heteroarenes including acridine, phenanthroline, naphthyridine, quinoxaline, imidazo[1,2-a]pyridine, and indole under comparably mild reaction conditions. In addition, recycling of these Co nanoparticles and their ability for dehydrogenation catalysis are showcased. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Nickel-Catalyzed Stereodivergent Synthesis of E- and Z-Alkenes by Hydrogenation of Alkynes
    (Weinheim : Wiley-VCH, 2019) Murugesan, Kathiravan; Bheeter, Charles Beromeo; Linnebank, Pim R.; Spannenberg, Anke; Reek, Joost N.H.; Jagadeesh, Rajenahally V.; Beller, Matthias
    A convenient protocol for stereodivergent hydrogenation of alkynes to E- and Z-alkenes by using nickel catalysts was developed. Simple Ni(NO3)2⋅6 H2O as a catalyst precursor formed active nanoparticles, which were effective for the semihydrogenation of several alkynes with high selectivity for the Z-alkene (Z/E>99:1). Upon addition of specific multidentate ligands (triphos, tetraphos), the resulting molecular catalysts were highly selective for the E-alkene products (E/Z>99:1). Mechanistic studies revealed that the Z-alkene-selective catalyst was heterogeneous whereas the E-alkene-selective catalyst was homogeneous. In the latter case, the alkyne was first hydrogenated to a Z-alkene, which was subsequently isomerized to the E-alkene. This proposal was supported by density functional theory calculations. This synthetic methodology was shown to be generally applicable in >40 examples and scalable to multigram-scale experiments. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.