Search Results

Now showing 1 - 3 of 3
  • Item
    Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines
    ([London] : Nature Publishing Group UK, 2018) Senthamarai, Thirusangumurugan; Murugesan, Kathiravan; Schneidewind, Jacob; Kalevaru, Narayana V.; Baumann, Wolfgang; Neumann, Helfried; Kamer, Paul C. J.; Beller, Matthias; Jagadeesh, Rajenahally V.
    The production of primary benzylic and aliphatic amines, which represent essential feedstocks and key intermediates for valuable chemicals, life science molecules and materials, is of central importance. Here, we report the synthesis of this class of amines starting from carbonyl compounds and ammonia by Ru-catalyzed reductive amination using H2. Key to success for this synthesis is the use of a simple RuCl2(PPh3)3 catalyst that empowers the synthesis of >90 various linear and branched benzylic, heterocyclic, and aliphatic amines under industrially viable and scalable conditions. Applying this catalyst, −NH2 moiety has been introduced in functionalized and structurally diverse compounds, steroid derivatives and pharmaceuticals. Noteworthy, the synthetic utility of this Ru-catalyzed amination protocol has been demonstrated by upscaling the reactions up to 10 gram-scale syntheses. Furthermore, in situ NMR studies were performed for the identification of active catalytic species. Based on these studies a mechanism for Ru-catalyzed reductive amination is proposed.
  • Item
    Homogeneous and heterogeneous catalytic reduction of amides and related compounds using molecular hydrogen
    ([London] : Nature Publishing Group UK, 2020) Cabrero-Antonino, Jose R.; Adam, Rosa; Papa, Veronica; Beller, Matthias
    Catalytic hydrogenation of amides is of great interest for chemists working in organic synthesis, as the resulting amines are widely featured in natural products, drugs, agrochemicals, dyes, etc. Compared to traditional reduction of amides using (over)stoichiometric reductants, the direct hydrogenation of amides using molecular hydrogen represents a greener approach. Furthermore, amide hydrogenation is a highly versatile transformation, since not only higher amines (obtained by C–O cleavage), but also lower amines and alcohols, or amino alcohols (obtained by C–N cleavage) can be selectively accessed by fine tuning of reaction conditions. This review describes the most recent advances in the area of amide hydrogenation using H2 exclusively and molecularly defined homogeneous as well as nano-structured heterogeneous catalysts, with a special focus on catalyst development and synthetic applications.
  • Item
    Homogeneous cobalt-catalyzed reductive amination for synthesis of functionalized primary amines
    ([London] : Nature Publishing Group UK, 2019) Murugesan, Kathiravan; Wei, Zhihong; Chandrashekhar, Vishwas G.; Neumann, Helfried; Spannenberg, Anke; Jiao, Haijun; Beller, Matthias; Jagadeesh, Rajenahally V.
    The development of earth abundant 3d metal-based catalysts continues to be an important goal of chemical research. In particular, the design of base metal complexes for reductive amination to produce primary amines remains as challenging. Here, we report the combination of cobalt and linear-triphos (bis(2-diphenylphosphinoethyl)phenylphosphine) as the molecularly-defined non-noble metal catalyst for the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds, gaseous ammonia and hydrogen in good to excellent yields. Noteworthy, this cobalt catalyst exhibits high selectivity and as a result the -NH2 moiety is introduced in functionalized and structurally diverse molecules. An inner-sphere mechanism on the basis of the mono-cationic [triphos-CoH]+ complex as active catalyst is proposed and supported with density functional theory computation on the doublet state potential free energy surface and H2 metathesis is found as the rate-determining step.