Search Results

Now showing 1 - 10 of 57
  • Item
    Hydrogen production from formic acid catalyzed by a phosphine free manganese complex: Investigation and mechanistic insights
    (Cambridge : RSC, 2020) Léval, Alexander; Agapova, Anastasiya; Steinlechner, Christoph; Alberico, Elisabetta; Junge, Henrik; Beller, Matthias
    Formic acid dehydrogenation (FAD) is considered as a promising process in the context of hydrogen storage. Its low toxicity, availability and convenient handling make FA attractive as a potential hydrogen carrier. To date, most promising catalysts have been based on noble metals, such as ruthenium and iridium. Efficient non-noble metal systems like iron were designed but manganese remains relatively unexplored for this transformation. In this work, we present a panel of phosphine free manganese catalysts which showed activity and stability in formic acid dehydrogenation. The most promising results were obtained with Mn(pyridine-imidazoline)(CO)3Br yielding >14 l of the H2/CO2 mixture and proved to be stable for more than 3 days. Additionally, this study provides insights into the mechanism of formic acid dehydrogenation. Kinetic experiments, Kinetic Isotopic Effect (KIE), in situ observations, NMR labeling experiments and pH monitoring allow us to propose a catalytic cycle for this transformation.
  • Item
    Manganese Catalyzed Asymmetric Transfer Hydrogenation of Ketones Using Chiral Oxamide Ligands
    (Stuttgart [u.a.] : Thieme, 2019) Schneekönig, Jacob; Junge, Kathrin; Beller, Matthias
    The asymmetric transfer hydrogenation of ketones using isopropyl alcohol (IPA) as hydrogen donor in the presence of novel manganese catalysts is explored. The selective and active systems are easily generated in situ from [MnBr(CO)5] and inexpensive C 2-symmeric bisoxalamide ligands. Under the optimized reaction conditions, the Mn-derived catalyst gave higher enantioselectivity compared with the related ruthenium catalyst.
  • Item
    Efficient palladium-catalyzed synthesis of 2-aryl propionic acids
    (Basel : MDPI, 2020) Neumann, Helfried; Sergeev, Alexey G.; Spannenberg, Anke; Beller, Matthias
    A flexible two-step, one-pot procedure was developed to synthesize 2-aryl propionic acids including the anti-inflammatory drugs naproxen and flurbiprofen. Optimal results were obtained in the presence of the novel ligand neoisopinocampheyldiphenylphosphine (NISPCPP) (9) which enabled the efficient sequential palladium-catalyzed Heck coupling of aryl bromides with ethylene and hydroxycarbonylation of the resulting styrenes to 2-aryl propionic acids. This cascade transformation leads with high regioselectivity to the desired products in good yields and avoids the need for additional purification steps. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Isoquinolinamine FX-9 Exhibits Anti-Mitotic Activity in Human and Canine Prostate Carcinoma Cell Lines
    (Basel : Molecular Diversity Preservation International, 2019) Schille, Jan Torben; Nolte, Ingo; Packeiser, Eva-Maria; Wiesner, Laura; Hein, Jens Ingo; Weiner, Franziska; Wu, Xiao-Feng; Beller, Matthias; Junghanss, Christian; Escobar, Hugo Murua
    Current therapies are insufficient for metastatic prostate cancer (PCa) in men and dogs. As human castrate-resistant PCa shares several characteristics with the canine disease, comparative evaluation of novel therapeutic agents is of considerable value for both species. Novel isoquinolinamine FX-9 exhibits antiproliferative activity in acute lymphoblastic leukemia cell lines but has not been tested yet on any solid neoplasia type. In this study, FX-9's mediated effects were characterized on two human (PC-3, LNCaP) and two canine (CT1258, 0846) PCa cell lines, as well as benign solid tissue cells. FX-9 significantly inhibited cell viability and induced apoptosis with concentrations in the low micromolar range. Mediated effects were highly comparable between the PCa cell lines of both species, but less pronounced on non-malignant chondrocytes and fibroblasts. Interestingly, FX-9 exposure also leads to the formation and survival of enlarged multinucleated cells through mitotic slippage. Based on the results, FX-9 acts as an anti-mitotic agent with reduced cytotoxic activity in benign cells. The characterization of FX-9-induced effects on PCa cells provides a basis for in vivo studies with the potential of valuable transferable findings to the benefit of men and dogs. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Monodisperse nickel-nanoparticles for stereo- and chemoselective hydrogenation of alkynes to alkenes
    (Amsterdam [u.a.] : Elsevier, 2019) Murugesan, Kathiravan; Alshammari, Ahmad S.; Sohail, Manzar; Beller, Matthias; Jagadeesh, Rajenahally V.
    Here, we report the use of monosaccharides for the preparation of novel nickel nanoparticles (NP), which constitute selective hydrogenation catalysts. For example, immobilization of fructose and Ni(OAc)2 on silica and subsequent pyrolysis under inert atmosphere produced graphitic shells encapsulated Ni-NP with uniform size and distribution. Interestingly, fructose acts as structure controlling compound to generate specific graphitic layers and the formation of monodisperse NP. The resulting stable and reusable catalysts allow for stereo- and chemoselective semihydrogenation of functionalized and structurally diverse alkynes in high yields and selectivity. © 2019 The Author(s)
  • Item
    A General and Highly Selective Palladium-Catalyzed Hydroamidation of 1,3-Diynes
    (Weinheim : Wiley-VCH, 2021) Liu, Jiawang; Schneider, Carolin; Yang, Ji; Wei, Zhihong; Jiao, Haijun; Franke, Robert; Jackstell, Ralf; Beller, Matthias
    A chemo-, regio-, and stereoselective mono-hydroamidation of (un)symmetrical 1,3-diynes is described. Key for the success of this novel transformation is the utilization of an advanced palladium catalyst system with the specific ligand Neolephos. The synthetic value of this general approach to synthetically useful α-alkynyl-α, β-unsaturated amides is showcased by diversification of several structurally complex molecules and marketed drugs. Control experiments and density-functional theory (M06L-SMD) computations also suggest the crucial role of the substrate in controlling the regioselectivity of unsymmetrical 1,3-diynes. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni-Core-Shell Catalyst
    (Weinheim : Wiley-VCH, 2021) Gao, Jie; Ma, Rui; Feng, Lu; Liu, Yuefeng; Jackstell, Ralf; Jagadeesh, Rajenahally V.; Beller, Matthias
    A general protocol for the selective hydrogenation and deuteration of a variety of alkenes is presented. Key to success for these reactions is the use of a specific nickel-graphitic shell-based core–shell-structured catalyst, which is conveniently prepared by impregnation and subsequent calcination of nickel nitrate on carbon at 450 °C under argon. Applying this nanostructured catalyst, both terminal and internal alkenes, which are of industrial and commercial importance, were selectively hydrogenated and deuterated at ambient conditions (room temperature, using 1 bar hydrogen or 1 bar deuterium), giving access to the corresponding alkanes and deuterium-labeled alkanes in good to excellent yields. The synthetic utility and practicability of this Ni-based hydrogenation protocol is demonstrated by gram-scale reactions as well as efficient catalyst recycling experiments. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    A General Regioselective Synthesis of Alcohols by Cobalt-Catalyzed Hydrogenation of Epoxides
    (Weinheim : Wiley-VCH, 2020) Liu, Weiping; Leischner, Thomas; Li, Wu; Junge, Kathrin; Beller, Matthias
    A straightforward methodology for the synthesis of anti-Markovnikov-type alcohols is presented. By using a specific cobalt triphos complex in the presence of Zn(OTf)2 as an additive, the hydrogenation of epoxides proceeds with high yields and selectivities. The described protocol shows a broad substrate scope, including multi-substituted internal and terminal epoxides, as well as a good functional-group tolerance. Various natural-product derivatives, including steroids, terpenoids, and sesquiterpenoids, gave access to the corresponding alcohols in moderate-to-excellent yields. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Cobalt Single-Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid
    (Weinheim : Wiley-VCH, 2020) Li, Xiang; Surkus, Annette-Enrica; Rabeah, Jabor; Anwar, Muhammad; Dastigir, Sarim; Junge, Henrik; Brückner, Angelika; Beller, Matthias
    Metal–organic framework (MOF)-derived Co-N-C catalysts with isolated single cobalt atoms have been synthesized and compared with cobalt nanoparticles for formic acid dehydrogenation. The atomically dispersed Co-N-C catalyst achieves superior activity, better acid resistance, and improved long-term stability compared with nanoparticles synthesized by a similar route. High-angle annular dark-field–scanning transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and X-ray absorption fine structure characterizations reveal the formation of CoIINx centers as active sites. The optimal low-cost catalyst is a promising candidate for liquid H2 generation. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Cascade Synthesis of Pyrroles from Nitroarenes with Benign Reductants Using a Heterogeneous Cobalt Catalyst
    (Weinheim : Wiley-VCH, 2020) Ryabchuk, Pavel; Leischner, Thomas; Kreyenschulte, Carsten; Spannenberg, Anke; Junge, Kathrin; Beller, Matthias
    A bifunctional 3d-metal catalyst for the cascade synthesis of diverse pyrroles from nitroarenes is presented. The optimal catalytic system Co/NGr-C@SiO2-L is obtained by pyrolysis of a cobalt-impregnated composite followed by subsequent selective leaching. In the presence of this material, (transfer) hydrogenation of easily available nitroarenes and subsequent Paal–Knorr/Clauson-Kass condensation provides >40 pyrroles in good to high yields using dihydrogen, formic acid, or a CO/H2O mixture (WGSR conditions) as reductant. In addition to the favorable step economy, this straightforward domino process does not require any solvents or external co-catalysts. The general synthetic utility of this methodology was demonstrated on a variety of functionalized substrates including the preparation of biologically active and pharmaceutically relevant compounds, for example, (+)-Isamoltane. © 2020 The Authors. Published by Wiley-VCH GmbH