Search Results

Now showing 1 - 10 of 73
  • Item
    A General and Highly Selective Palladium-Catalyzed Hydroamidation of 1,3-Diynes
    (Weinheim : Wiley-VCH, 2021) Liu, Jiawang; Schneider, Carolin; Yang, Ji; Wei, Zhihong; Jiao, Haijun; Franke, Robert; Jackstell, Ralf; Beller, Matthias
    A chemo-, regio-, and stereoselective mono-hydroamidation of (un)symmetrical 1,3-diynes is described. Key for the success of this novel transformation is the utilization of an advanced palladium catalyst system with the specific ligand Neolephos. The synthetic value of this general approach to synthetically useful α-alkynyl-α, β-unsaturated amides is showcased by diversification of several structurally complex molecules and marketed drugs. Control experiments and density-functional theory (M06L-SMD) computations also suggest the crucial role of the substrate in controlling the regioselectivity of unsymmetrical 1,3-diynes. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni-Core-Shell Catalyst
    (Weinheim : Wiley-VCH, 2021) Gao, Jie; Ma, Rui; Feng, Lu; Liu, Yuefeng; Jackstell, Ralf; Jagadeesh, Rajenahally V.; Beller, Matthias
    A general protocol for the selective hydrogenation and deuteration of a variety of alkenes is presented. Key to success for these reactions is the use of a specific nickel-graphitic shell-based core–shell-structured catalyst, which is conveniently prepared by impregnation and subsequent calcination of nickel nitrate on carbon at 450 °C under argon. Applying this nanostructured catalyst, both terminal and internal alkenes, which are of industrial and commercial importance, were selectively hydrogenated and deuterated at ambient conditions (room temperature, using 1 bar hydrogen or 1 bar deuterium), giving access to the corresponding alkanes and deuterium-labeled alkanes in good to excellent yields. The synthetic utility and practicability of this Ni-based hydrogenation protocol is demonstrated by gram-scale reactions as well as efficient catalyst recycling experiments. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    A General Regioselective Synthesis of Alcohols by Cobalt-Catalyzed Hydrogenation of Epoxides
    (Weinheim : Wiley-VCH, 2020) Liu, Weiping; Leischner, Thomas; Li, Wu; Junge, Kathrin; Beller, Matthias
    A straightforward methodology for the synthesis of anti-Markovnikov-type alcohols is presented. By using a specific cobalt triphos complex in the presence of Zn(OTf)2 as an additive, the hydrogenation of epoxides proceeds with high yields and selectivities. The described protocol shows a broad substrate scope, including multi-substituted internal and terminal epoxides, as well as a good functional-group tolerance. Various natural-product derivatives, including steroids, terpenoids, and sesquiterpenoids, gave access to the corresponding alcohols in moderate-to-excellent yields. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Cobalt Single-Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid
    (Weinheim : Wiley-VCH, 2020) Li, Xiang; Surkus, Annette-Enrica; Rabeah, Jabor; Anwar, Muhammad; Dastigir, Sarim; Junge, Henrik; Brückner, Angelika; Beller, Matthias
    Metal–organic framework (MOF)-derived Co-N-C catalysts with isolated single cobalt atoms have been synthesized and compared with cobalt nanoparticles for formic acid dehydrogenation. The atomically dispersed Co-N-C catalyst achieves superior activity, better acid resistance, and improved long-term stability compared with nanoparticles synthesized by a similar route. High-angle annular dark-field–scanning transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and X-ray absorption fine structure characterizations reveal the formation of CoIINx centers as active sites. The optimal low-cost catalyst is a promising candidate for liquid H2 generation. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Cascade Synthesis of Pyrroles from Nitroarenes with Benign Reductants Using a Heterogeneous Cobalt Catalyst
    (Weinheim : Wiley-VCH, 2020) Ryabchuk, Pavel; Leischner, Thomas; Kreyenschulte, Carsten; Spannenberg, Anke; Junge, Kathrin; Beller, Matthias
    A bifunctional 3d-metal catalyst for the cascade synthesis of diverse pyrroles from nitroarenes is presented. The optimal catalytic system Co/NGr-C@SiO2-L is obtained by pyrolysis of a cobalt-impregnated composite followed by subsequent selective leaching. In the presence of this material, (transfer) hydrogenation of easily available nitroarenes and subsequent Paal–Knorr/Clauson-Kass condensation provides >40 pyrroles in good to high yields using dihydrogen, formic acid, or a CO/H2O mixture (WGSR conditions) as reductant. In addition to the favorable step economy, this straightforward domino process does not require any solvents or external co-catalysts. The general synthetic utility of this methodology was demonstrated on a variety of functionalized substrates including the preparation of biologically active and pharmaceutically relevant compounds, for example, (+)-Isamoltane. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol
    (Weinheim : Wiley-VCH, 2016-12-2) Andérez-Fernández, María; Vogt, Lydia K.; Fischer, Steffen; Zhou, Wei; Jiao, Haijun; Garbe, Marcel; Elangovan, Saravanakumar; Junge, Kathrin; Junge, Henrik; Ludwig, Ralf; Beller, Matthias
    For the first time, structurally defined manganese pincer complexes catalyze the dehydrogenation of aqueous methanol to hydrogen and carbon dioxide, which is a transformation of interest with regard to the implementation of a hydrogen and methanol economy. Excellent long-term stability was demonstrated for the Mn-PNPiPr catalyst, as a turnover of more than 20 000 was reached. In addition to methanol, other important hydrogen carriers were also successfully dehydrogenated.
  • Item
    Ligand-Controlled Palladium-Catalyzed Carbonylation of Alkynols : Highly Selective Synthesis of α-Methylene-β-Lactones
    (Weinheim : Wiley-VCH, 2020) Ge, Yao; Ye, Fei; Liu, Jiawang; Yang, Ji; Spannenberg, Anke; Jiao, Haijun; Jackstell, Ralf; Beller, Matthias
    The first general and regioselective Pd-catalyzed cyclocarbonylation to give α-methylene-β-lactones is reported. Key to the success for this process is the use of a specific sterically demanding phosphine ligand based on N-arylated imidazole (L11) in the presence of Pd(MeCN)2Cl2 as pre-catalyst. A variety of easily available alkynols provide under additive-free conditions the corresponding α-methylene-β-lactones in moderate to good yields with excellent regio- and diastereoselectivity. The applicability of this novel methodology is showcased by the direct carbonylation of biologically active molecules including natural products. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Abschlußbericht des BMBF-Projektes "Life Science Katalyse & Engineering - Katalytische Verfahren für die optimierte Wirkstoffsuche", Teilprojekt "Katalyse für Wirkstoffderivatisierungen"
    (Hannover : Technische Informationsbibliothek (TIB), 2004) Beller, Matthias; Giertz, S.; Gördes, D.; Kumar, K.; Lo, W.F.; Michalik, D.; Neumann, H.; Tillack, A.; Zapf, A.
    [no abstract available]
  • Item
    Entwicklung und Erprobung neuer Instrumente zur Bildung von Verwertungs- und Transfernetzen innerhalb der Leibniz-Gemeinschaft: "Nachhaltige Synthesen mit Kohlendioxid: Katalyse, Engineering und Anwendungen" : Abschlussbericht
    (Hannover : Technische Informationsbibliothek (TIB), 2009) Beller, Matthias; Martin, Andreas; Kosslick, H.; Jovela, I; Hollmann, D.; Schwarz, N.; Mevius, K.; Bitterlich, B.; Agarwal, M; Kasireddy, M.R.; Steinhauer, B.; Deutsch, J.; Radnick, J.; Ziemann, S.; Kalevaru, N.; Lange, B.; Bischofberger, P.
    [no abstract available]
  • Item
    Synthesis of Single Atom Based Heterogeneous Platinum Catalysts: High Selectivity and Activity for Hydrosilylation Reactions
    (Washington, DC : ACS Publ., 2017) Cui, Xinjiang; Junge, Kathrin; Dai, Xingchao; Kreyenschulte, Carsten; Pohl, Marga-Martina; Wohlrab, Sebastian; Shi, Feng; Brückner, Angelika; Beller, Matthias
    Catalytic hydrosilylation represents a straightforward and atom-efficient methodology for the creation of C-Si bonds. In general, the application of homogeneous platinum complexes prevails in industry and academia. Herein, we describe the first heterogeneous single atom catalysts (SACs), which are conveniently prepared by decorating alumina nanorods with platinum atoms. The resulting stable material efficiently catalyzes hydrosilylation of industrially relevant olefins with high TON (≈105). A variety of substrates is selectively hydrosilylated including compounds with sensitive reducible and other functional groups (N, B, F, Cl). The single atom based catalyst shows significantly higher activity compared to related Pt nanoparticles.