Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Cooperative catalytic methoxycarbonylation of alkenes: Uncovering the role of palladium complexes with hemilabile ligands

2018, Dong, Kaiwu, Sang, Rui, Wei, Zhihong, Liu, Jie, Dühren, Ricarda, Spannenberg, Anke, Jiao, Haijun, Neumann, Helfried, Jackstell, Ralf, Franke, Robert, Beller, Matthias

Mechanistic studies of the catalyst [Pd2(dba)3/1,1′-bis(tert-butyl(pyridin-2-yl)phosphanyl)ferrocene, L2] for olefin alkoxycarbonylation reactions are described. X-ray crystallography reveals the coordination of the pyridyl nitrogen atom in L2 to the palladium center of the catalytic intermediates. DFT calculations on the elementary steps of the industrially relevant carbonylation of ethylene (the Lucite α-process) indicate that the protonated pyridyl moiety is formed immediately, which facilitates the formation of the active palladium hydride complex. The insertion of ethylene and CO into this intermediate leads to the corresponding palladium acyl species, which is kinetically reversible. Notably, this key species is stabilized by the hemilabile coordination of the pyridyl nitrogen atom in L2. The rate-determining alcoholysis of the acyl palladium complex is substantially facilitated by metal-ligand cooperation. Specifically, the deprotonation of the alcohol by the built-in base of the ligand allows a facile intramolecular nucleophilic attack on the acyl palladium species concertedly. Kinetic measurements support this mechanistic proposal and show that the rate of the carbonylation step is zero-order dependent on ethylene and CO. Comparing CH3OD and CH3OH as nucleophiles suggests the involvement of (de)protonation in the rate-determining step.

Loading...
Thumbnail Image
Item

Efficient palladium-catalyzed synthesis of 2-aryl propionic acids

2020, Neumann, Helfried, Sergeev, Alexey G., Spannenberg, Anke, Beller, Matthias

A flexible two-step, one-pot procedure was developed to synthesize 2-aryl propionic acids including the anti-inflammatory drugs naproxen and flurbiprofen. Optimal results were obtained in the presence of the novel ligand neoisopinocampheyldiphenylphosphine (NISPCPP) (9) which enabled the efficient sequential palladium-catalyzed Heck coupling of aryl bromides with ethylene and hydroxycarbonylation of the resulting styrenes to 2-aryl propionic acids. This cascade transformation leads with high regioselectivity to the desired products in good yields and avoids the need for additional purification steps. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Palladium-Catalyzed Alkoxycarbonylation of sec-Benzylic Ethers

2020, Schneider, Carolin, Jackstell, Ralf, Maes, Bert U.W., Beller, Matthias

Herein, we report the palladium-catalyzed synthesis of 3-arylpropionate esters starting from secondary benzylic ethers. With this investigation it could be shown that ethers are suitable starting materials in addition to the established carbonylation reactions of olefins, alcohols, or aryl halides. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Efficient Synthesis of Novel Plasticizers by Direct Palladium-Catalyzed Di- or Multi-carbonylations

2022, Hu, Yuya, Sang, Rui, Vroemans, Robby, Mollaert, Guillaume, Razzaq, Rauf, Neumann, Helfried, Junge, Henrik, Franke, Robert, Jackstell, Ralf, Maes, Bert U. W., Beller, Matthias

Diesters are of fundamental importance in the chemical industry and are used for many applications, e.g. as plasticizers, surfactants, emulsifiers, and lubricants. Herein, we present a straightforward and efficient method for the selective synthesis of diesters via palladium-catalyzed direct carbonylation of di- or polyols with readily available alkenes. Key-to-success is the use of a specific palladium catalyst with the “built-in-base” ligand L16 providing esterification of all alcohols and a high n/iso ratio. The synthesized diesters were evaluated as potential plasticizers in PVC films by measuring the glass transition temperature (Tg) via differential scanning calorimetry (DSC).