Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

All-optical Stückelberg spectroscopy of strongly driven Rydberg states

2022, Bengs, Ulrich, Patchkovskii, Serguei, Ivanov, Misha, Zhavoronkov, Nickolai

The AC Stark shift of electronic levels is ubiquitous in the interaction of intense light fields with atoms and molecules. As the light intensity changes on the rising and falling edges of a femtosecond laser pulse, it shifts the Rydberg states in and out of multiphoton resonances with the ground state. The two resonant pathways for transient excitation arising at the leading and the trailing edges of the pulse generate Young's type interference, generally referred to as the Stückelberg oscillations. Here we report the observation of the Stückelberg oscillations in the intensity of the coherent free-induction decay following resonant multiphoton excitation. Moreover, combining the experimental results with accurate numerical simulations and a simple model, we use the Stückelberg oscillations to recover the population dynamics of strongly driven Rydberg states inside the laser pulse by all-optical measurements after the end of the pulse. We demonstrate the potential of this spectroscopy to characterize lifetimes of Rydberg states dressed by laser fields with strengths far exceeding the Coulomb field between the Rydberg electron and the core.

Loading...
Thumbnail Image
Item

Elliptically polarized high-harmonic radiation for production of isolated attosecond pulses

2021, Bengs, Ulrich, Zhavoronkov, Nickolai

Circularly polarized attosecond pulses are powerful tool to study chiral light-matter interaction via chiral electron dynamics. However, access to isolated circularly polarized attosecond pulses enabling straightforward interpretation of measurements, still remains a challenge. In this work, we experimentally demonstrate the generation of highly elliptically polarized high-harmonics in a two-color, bi-circular, collinear laser field. The intensity and shape of the combined few-cycle driving radiation is optimized to produce a broadband continuum with enhanced spectral chirality in the range of 15-55 eV supporting the generation of isolated attosecond pulses with duration down to 150 as. We apply spectrally resolved polarimetry to determine the full Stokes vector of different spectral components of the continuum, yielding a homogenous helicity distribution with ellipticity in the range of 0.8-0.95 and a negligible unpolarized content.