Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Modeling the contact mechanics of hydrogels

2019, Mueser, M.H., Li, H., Bennewitz, R.

A computationally lean model for the coarse-grained description of contact mechanics of hydrogels is proposed and characterized. It consists of a simple bead-spring model for the interaction within a chain, potentials describing the interaction between monomers and mold or confining walls, and a coarse-grained potential reflecting the solvent-mediated effective repulsion between non-bonded monomers. Moreover, crosslinking only takes place after the polymers have equilibrated in their mold. As such, the model is able to reflect the density, solvent quality, and the mold hydrophobicity that existed during the crosslinking of the polymers. Finally, such produced hydrogels are exposed to sinusoidal indenters. The simulations reveal a wavevector-dependent effective modulus E*(q) with the following properties: (i) stiffening under mechanical pressure, and a sensitivity of E*(q) on (ii) the degree of crosslinking at large wavelengths, (iii) the solvent quality, and (iv) the hydrophobicity of the mold in which the polymers were crosslinked. Finally, the simulations provide evidence that the elastic heterogeneity inherent to hydrogels can suffice to pin a compressed hydrogel to a microscopically frictionless wall that is undulated at a mesoscopic length scale. Although the model and simulations of this feasibility study are only two-dimensional, its generalization to three dimensions can be achieved in a straightforward fashion. © 2019 by the authors.

Loading...
Thumbnail Image
Item

Single layer graphene induces load-bearing molecular layering at the hexadecane-steel interface

2019, Krämer, G., Kim, C., Kim, K.-S., Bennewitz, R.

The influence of a single layer graphene on the interface between a polished steel surface and the model lubricant hexadecane is explored by high-resolution force microscopy. Nanometer-scale friction is reduced by a factor of three on graphene compared to the steel substrate, with an ordered layer of hexadecane adsorbed on the graphene. Graphene furthermore induces a molecular ordering in the confined lubricant with an average range of 4-5 layers and with a strongly increased load-bearing capacity compared to the lubricant on the bare steel substrate. © 2019 IOP Publishing Ltd.