Search Results

Now showing 1 - 4 of 4
  • Item
    Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation
    (Frankfurt am Main : Beilstein-Institut, 2015) Caron, Arnaud; Bennewitz, Roland
    We combine non-contact atomic force microscopy (AFM) imaging and AFM indentation in ultra-high vacuum to quantitatively and reproducibly determine the hardness and deformation mechanisms of Pt(111) and a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with unprecedented spatial resolution. Our results on plastic deformation mechanisms of crystalline Pt(111) are consistent with the discrete mechanisms established for larger scales: Plasticity is mediated by dislocation gliding and no rate dependence is observed. For the metallic glass we have discovered that plastic deformation at the nanometer scale is not discrete but continuous and localized around the indenter, and does not exhibit rate dependence. This contrasts with the observation of serrated, rate-dependent flow of metallic glasses at larger scales. Our results reveal a lower size limit for metallic glasses below which shear transformation mechanisms are not activated by indentation. In the case of metallic glass, we conclude that the energy stored in the stressed volume during nanometer-scale indentation is insufficient to account for the interfacial energy of a shear band in the glassy matrix.
  • Item
    In Situ Observation Reveals Local Detachment Mechanisms and Suction Effects in Micropatterned Adhesives
    (Weinheim : Wiley-VCH, 2019) Tinnemann, Verena; Hernández, Luissé; Fischer, Sarah C.L.; Arzt, Eduard; Bennewitz, Roland; Hensel, René
    Fibrillar adhesion pads of insects and geckoes have inspired the design of high-performance adhesives enabling a new generation of handling devices. Despite much progress over the last decade, the current understanding of these adhesives is limited to single contact pillars and the behavior of whole arrays is largely unexplored. In the study reported here, a novel approach is taken to gain insight into the detachment mechanisms of whole micropatterned arrays. Individual contacts are imaged by frustrated total internal reflection, allowing in situ observation of contact formation and separation during adhesion tests. The detachment of arrays is found to be governed by the distributed adhesion strength of individual pillars, but no collaborative effect mediated by elastic interactions can be detected. At the maximal force, about 30% of the mushroom structures are already detached. The adhesive forces decrease with reduced air pressure by 20% for the smooth and by 6% for the rough specimen. These contributions are attributed to a suction effect, whose strength depends critically on interfacial defects controlling the sealing quality of the contact. This dominates the detachment process and the resulting adhesion strength. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Friction force microscopy of tribochemistry and interfacial ageing for the SiOx/Si/Au system
    (Frankfurt am Main : Beilstein-Institut, 2018) Petzhold, Chritinane; Koch, Marcus; Bennewitz, Roland
    Friction force microscopy was performed with oxidized or gold-coated silicon tips sliding on Au(111) or oxidized Si(100) surfaces in ultrahigh vacuum. We measured very low friction forces compared to adhesion forces and found a modulation of lateral forces reflecting the atomic structure of the surfaces. Holding the force-microscopy tip stationary for some time did not lead to an increase in static friction, i.e., no contact ageing was observed for these pairs of tip and surface. Passivating layers from tip or surface were removed in order to allow for contact ageing through the development of chemical bonds in the static contact. After removal of the passivating layers, tribochemical reactions resulted in strong friction forces and tip wear. Friction, wear, and the re-passivation by oxides are discussed based on results for the temporal development of friction forces, on images of the scanned area after friction force microscopy experiments, and on electron microscopy of the tips.
  • Item
    Dynamic effects in friction and adhesion through cooperative rupture and formation of supramolecular bonds
    (Cambridge : Royal Society of Chemistry, 2015) Blass, Johanna; Albrecht, Marcel; Bozna, Bianca L.; Wenz, Gerhard; Bennewitz, Roland
    We introduce a molecular toolkit for studying the dynamics in friction and adhesion from the single molecule level to effects of multivalency. As experimental model system we use supramolecular bonds established by the inclusion of ditopic adamantane connector molecules into two surface-bound cyclodextrin molecules, attached to a tip of an atomic force microscope (AFM) and to a flat silicon surface. The rupture force of a single bond does not depend on the pulling rate, indicating that the fast complexation kinetics of adamantane and cyclodextrin are probed in thermal equilibrium. In contrast, the pull-off force for a group of supramolecular bonds depends on the unloading rate revealing a non-equilibrium situation, an effect discussed as the combined action of multivalency and cantilever inertia effects. Friction forces exhibit a stick-slip characteristic which is explained by the cooperative rupture of groups of host-guest bonds and their rebinding. No dependence of friction on the sliding velocity has been observed in the accessible range of velocities due to fast rebinding and the negligible delay of cantilever response in AFM lateral force measurements.