Search Results

Now showing 1 - 2 of 2
  • Item
    Bending as Key Mechanism in the Tactile Perception of Fibrillar Surfaces
    (Weinheim : Wiley-VCH, 2021) Gedsun, Angelika; Sahli, Riad; Meng, Xing; Hensel, René; Bennewitz, Roland
    The touching of fibrillar surfaces elicits a broad range of affective reactions, which range from the adverse stinginess of a stiff bristle brush to the pleasant feel of velvet. To study the tactile perception of model fibrillar surfaces, a unique set of samples carrying dense, regular arrays of cylindrical microfibrils with high aspect ratio made from different elastomer materials have been created. Fibril length and material compliance are varied independently such that their respective influence on tactile perception can be elucidated. This work finds that the tactile perception of similarity between samples is dominated by bending of the fibrils under sliding touch. The results demonstrate that variations of material stiffness and of surface structure are not necessarily perceived independently by touch. In the case of fibrillar elastomer surfaces, it is rather the ratio of fibril length and storage modulus which determines fibril bending and becomes the dominant tactile dimension. Visual access to the sample during tactile exploration improves the tactile perception of fibril bendability. Experiments with colored samples show a distraction by color in participants’ decisions regarding tactile similarity only for yellow samples of outstanding brightness.
  • Item
    Relationship between corrosion and nanoscale friction on a metallic glass
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2022) Ma, Haoran; Bennewitz, Roland
    Metallic glasses are promising materials for microdevices, although corrosion and friction limit their effectiveness and durability. We investigated nanoscale friction on a metallic glass in corrosive solutions after different periods of immersion time using atomic force microscopy to elucidate the influence of corrosion on nanoscale friction. The evolution of friction upon repeated scanning cycles on the corroded surfaces reveals a bilayer surface oxide film, of which the outer layer is removed by the scanning tip. The measurement of friction and adhesion allows one to compare the physicochemical processes of surface dissolution at the interface of the two layers. The findings contribute to the understanding of mechanical contacts with metallic glasses under corrosive conditions by exploring the interrelation of microscopic corrosion mechanisms and nanoscale friction.