Search Results

Now showing 1 - 7 of 7
  • Item
    Milk fatty acids estimated by mid-infrared spectroscopy and milk yield can predict methane emissions in dairy cows
    (Berlin ; Heidelberg : Springer, 2018-5-2) Engelke, Stefanie W.; Daş, Gürbüz; Derno, Michael; Tuchscherer, Armin; Berg, Werner; Kuhla, Björn; Metges, Cornelia C.
    Ruminant enteric methane emission contributes to global warming. Although breeding low methane-emitting cows appears to be possible through genetic selection, doing so requires methane emission quantification by using elaborate instrumentation (respiration chambers, SF6 technique, GreenFeed) not feasible on a large scale. It has been suggested that milk fatty acids are promising markers of methane production. We hypothesized that methane emission can be predicted from the milk fatty acid concentrations determined by mid-infrared spectroscopy, and the integration of energy-corrected milk yield would improve the prediction. Therefore, we examined relationships between methane emission of cows measured in respiration chambers and milk fatty acids, predicted by mid-infrared spectroscopy, to derive diet-specific and general prediction equations based on milk fatty acid concentrations alone and with the additional consideration of energy-corrected milk yield. Cows were fed diets differing in forage type and linseed supplementation to generate a large variation in both CH4 emission and milk fatty acids. Depending on the diet, equations derived from regression analysis explained 61 to 96% of variation of methane emission, implying the potential of milk fatty acid data predicted by mid-infrared spectroscopy as novel proxy for direct methane emission measurements. When data from all diets were analyzed collectively, the equation with energy-corrected milk yield (CH4 (L/day) = − 1364 + 9.58 × energy-corrected milk yield + 18.5 × saturated fatty acids + 32.4 × C18:0) showed an improved coefficient of determination of cross-validation R2 CV = 0.72 compared to an equation without energy-corrected milk yield (R2 CV = 0.61). Equations developed for diets supplemented by linseed showed a lower R2 CV as compared to diets without linseed (0.39 to 0.58 vs. 0.50 to 0.91). We demonstrate for the first time that milk fatty acid concentrations predicted by mid-infrared spectroscopy together with energy-corrected milk yield can be used to estimate enteric methane emission in dairy cows. © 2018, The Author(s).
  • Item
    Agricultural Water Management in Brandenburg
    (Berlin : Gesellschaft für Erdkunde, 2011) Drastig, Katrin; Prochnow, Annette; Baumecker, Michael; Berg, Werner; Brunsch, Reiner
    The present study explores whether regional water resources can be used more efficiently by Brandenburg’s agricultural systems. A systematic analysis of measures to raise the water efficiency follows the description of agriculture in Brandenburg today. Brandenburg’s agricultural systems are separated into three sections: soils, plant production and livestock farming. Within these sections measures to increase water efficiency are listed and analysed with reference to five objective criteria for raising water use efficiency. In the soil section the measures soil tillage and humus conservation management are assigned to the criteria. The following fields in the plant production section are similarly investigated: breeding, seeding, fertilisation, tactically chosen crops, avoidance of competition by herbicide use and efficient irrigation practices as well as watersaving storage and cleaning of field crops. In livestock farming the supply of drinking water and cleaning and cooling processes are analysed. In view of the complexity of the agricultural farming systems in Brandenburg, general measures to raise water use efficiency could not be derived. Sitespecific tillage practices and crop patterns adjusted to the recent weather conditions may reflect the specific diversity of Brandenburg more efficiently.
  • Item
    Awassi sheep keeping in the Arabic steppe in relation to nitrous oxide emission from soil
    (Amsterdam : Elsevier, 2013) Hijazi, Omar; Berg, Werner; Moussa, Samouil; Ammon, Christian; von Bobrutzki, Kristina; Brunsch, Reiner
    Sheep husbandry is the main source of income for farmers in arid zones. Increasing sheep production on steppes may increase the greenhouse gas production. The objective of this study was to investigate the nitrous oxide (N2O) emissions from the steppes for Awassi sheep keeping and feed cropping in arid zones such as Syria. The methodology developed by the Intergovernmental Panel on Climate Change (IPCC) was used to estimate N2O emissions. A survey was conducted on 64 farms in Syria to gather data for analysis. Precipitation and crop yield data from 2001 to 2009 were also used for calculation and modelling. Sheep-keeping systems, precipitation, year and the region have significant effects on N2O emissions (p<0.05). Emissions of N2O from lands with extensive, semi-intensive and intensive systems were 0.30 ± 0.093, 0.598± 0.113 and 2.243± 0.187 kg sheep1year1, respectively. Crop production was higher in regions with high precipitation levels, which helped to reduce N2O emissions. Using more residuals of wheat, cotton and soya as feed for sheep in the keeping systems evaluated may decrease the overuse of steppe regions and N2O emissions. Nitrous oxide emissions of N2O from sheep-keeping areas can be reduced by changing sheep-keeping systems and increasing the crop production in arid zones through artificial irrigation.
  • Item
    Luftgeschwindigkeit und Hitzebelastung im Milchviehstall - Auswirkungen auf das Tierwohl
    (Darmstadt : KTBL, 2012) Fiedler, Merike; Hoffmann, Gundula; Loebsin, Christiane; Berg, Werner; von Bobrutzki, Kristina; Ammon, Christian; Amon, Thomas
    Das Stallklima hat einen wesentlichen Einfluss auf das Wohlbefinden und die Leistungsfähigkeit von Milchkühen. In der vorliegenden Untersuchung wurden Stallklimamessungen innerhalb und außerhalb eines frei gelüfteten Milchviehstalls, mit dem Fokus auf der Luftgeschwindigkeit im Fress- und Liegebereich, durchgeführt. Die Ergebnisse zeigten, dass die untersuchten Stallbereiche aufgrund der heterogen auftretenden Luftgeschwindigkeiten unterschiedlich belüftet wurden. Des Weiteren wurden die Stallklimamessungen mit physiologischen Tierparametern korreliert, um sie in Bezug auf das thermische Wohlbefinden der Tiere interpretieren zu können. An heißen Tagen wichen die analysierten Parameter deutlich von den übrigen Tagen ab.
  • Item
    Methane prediction based on individual or groups of milk fatty acids for dairy cows fed rations with or without linseed
    (New York, NY [u.a.] : Elsevier, 2019) Engelke, Stefanie W.; Daş, Gürbüz; Derno, Michael; Tuchscherer, Armin; Wimmers, Klaus; Rychlik, Michael; Kienberger, Hermine; Berg, Werner; Kuhla, Björn; Metges, Cornelia C.
    Milk fatty acids (MFA) are a proxy for the prediction of CH4 emission from cows, and prediction differs with diet. Our objectives were (1) to compare the effect of diets on the relation between MFA profile and measured CH4 production, (2) to predict CH4 production based on 6 data sets differing in the number and type of MFA, and (3) to test whether additional inclusion of energy-corrected milk (ECM) yield or dry matter intake (DMI) as explanatory variables improves predictions. Twenty dairy cows were used. Four diets were used based on corn silage (CS) or grass silage (GS) without (L0) or with linseed (LS) supplementation. Ten cows were fed CS-L0 and CS-LS and the other 10 cows were fed GS-L0 and GS-LS in random order. In feeding wk 5 of each diet, CH4 production (L/d) was measured in respiration chambers for 48 h and milk was analyzed for MFA concentrations by gas chromatography. Specific CH4 prediction equations were obtained for L0-, LS-, GS-, and CS-based diets and for all 4 diets collectively and validated by an internal cross-validation. Models were developed containing either 43 identified MFA or a reduced set of 7 groups of biochemically related MFA plus C16:0 and C18:0. The CS and LS diets reduced CH4 production compared with GS and L0 diets, respectively. Methane yield (L/kg of DMI) reduction by LS was higher with CS than GS diets. The concentrations of C18:1 trans and n-3 MFA differed among GS and CS diets. The LS diets resulted in a higher proportion of unsaturated MFA at the expense of saturated MFA. When using the data set of 43 individual MFA to predict CH4 production (L/d), the cross-validation coefficient of determination (R2 CV) ranged from 0.47 to 0.92. When using groups of MFA variables, the R2 CV ranged from 0.31 to 0.84. The fit parameters of the latter models were improved by inclusion of ECM or DMI, but not when added to the data set of 43 MFA for all diets pooled. Models based on GS diets always had a lower prediction potential (R2 CV = 0.31 to 0.71) compared with data from CS diets (R2 CV = 0.56 to 0.92). Models based on LS diets produced lower prediction with data sets with reduced MFA variables (R2 CV = 0.62 to 0.68) compared with L0 diets (R2 CV = 0.67 to 0.80). The MFA C18:1 cis-9 and C24:0 and the monounsaturated FA occurred most often in models. In conclusion, models with a reduced number of MFA variables and ECM or DMI are suitable for CH4 prediction, and CH4 prediction equations based on diets containing linseed resulted in lower prediction accuracy. © 2019 American Dairy Science Association
  • Item
    Windkanaluntersuchungen an einem frei gelüfteten Milchviehstall
    (Darmstadt : KTBL, 2013) Fiedler, Merike; Schröter, Knut; Reinhardt, Andreas; Saha, Chayan; Loebsin, Christiane; Berg, Werner; Amon, Thomas
    Die Luftdurchströmung von frei gelüfteten Ställen und der sich daraus ergebende Luftwechsel bestimmen das Stallklima und die Emissionsraten von Schadstoffen. In der Praxis sind diese Kenngrößen aufgrund der zeitlichen wie räumlichen Variabilität der vorherrschenden Prozesse nur schwer zu erfassen. Laborexperimente im Windkanal können unter kontrollierten Bedingungen statistisch repräsentative Daten erzeugen und damit Praxismessungen sinnvoll ergänzen. Windkanalmessungen der horizontalen Windgeschwindigkeitskomponenten wurden an einem Modell eines frei gelüfteten Milchviehstalles durchgeführt. Die Messungen erfolgten unter einer turbulenzarmen Anströmung, um den Einfluss der Einbauten im Stallmodell auf die Luftströmung erfassen zu können. Die Ergebnisse zeigen, dass die Einbauten und der Futtertisch die gemessenen Strömungsgrößen beeinflussen.
  • Item
    Non-linear temperature dependency of ammonia and methane emissions from a naturally ventilated dairy barn
    (Amsterdam : Elsevier, 2016) Hempel, Sabrina; Saha, Chayan Kumer; Fiedler, Merike; Berg, Werner; Hansen, Christiane; Amon, Barbara; Amon, Thomas
    Ammonia (NH3) and methane (CH4) emissions from naturally ventilated dairy barns affect the environment and the wellbeing of humans and animals. Our study improves the understanding of the dependency of emission rates on climatic conditions with a particular focus on temperature. Previous investigations of the relation between gas emission and temperature mainly rely on linear regression or correlation analysis. We take up a preceding study presenting a multilinear regressionmodel based onNH3 and CH4 concentration and temperaturemeasurements between 2010 and 2012 in a dairy barn for 360 cows inNorthern Germany.We study scatter plots and non-linear regressionmodels for a subset of these data and show that the linear approximation comes to its limits when large temperature ranges are considered. The functional dependency of the emission rates on temperature differs among the gases. For NH3, the exponential dependency assumed in previous studies was proven. For methane, a parabolic relation was found. The emissions show large daily and annual variations and environmental impact factors like wind and humidity superimpose the temperature dependency but the functional shape in general persists. Complementary to the former insight that high temperature increases emissions, we found that in the case of CH4, also temperatures below 10 C lead to an increase in emissions from ruminal fermentation which is likely to be due to a change in animal activity. The improved prediction of emissions by the novel non-linear model may support more accurate economic and ecological assessments of smart barn concepts.