Search Results

Now showing 1 - 3 of 3
  • Item
    Energy and symmetry of dd excitations in undoped layered cuprates measured By Cu L3 resonant inelastic x-ray scattering
    (Bristol : IOP, 2011) Moretti Sala, M.; Bisogni, V.; Aruta, C.; Balestrino, G.; Berger, H.; Brookes, N.B.; De Luca, G.M.; Di Castro, D.; Grioni, M.; Guarise, M.; Medaglia, P.G.; Miletto, Granozio, F.; Minola, M.; Perna, P.; Radovic, M.; Salluzzo, M.; Schmitt, T.; Zhou, K.J.; Braicovich, L.; Ghiringhelli, G.
    We measured the high-resolution Cu L3 edge resonant inelastic x-ray scattering (RIXS) of undoped cuprates La2CuO4, Sr2CuO2Cl2, CaCuO2 and NdBa 2Cu3O6. The dominant spectral features were assigned to dd excitations and we extensively studied their polarization and scattering geometry dependence. In a pure ionic picture, we calculated the theoretical cross sections for those excitations and used these to fit the experimental data with excellent agreement. By doing so, we were able to determine the energy and symmetry of Cu-3d states for the four systems with unprecedented accuracy and confidence. The values of the effective parameters could be obtained for the singleion crystal field model but not for a simple two-dimensional cluster model. The firm experimental assessment of dd excitation energies carries important consequences for the physics of high-Tc superconductors. On the one hand, we found that the minimum energy of orbital excitation is always ≥ 1.4 eV, i.e. well above the mid-infrared spectral range, which leaves to magnetic excitations (up to 300 meV) a major role in Cooper pairing in cuprates. On the other hand, it has become possible to study quantitatively the effective influence of dd excitations on the superconducting gap in cuprates.
  • Item
    Fermi surface nesting in several transition metal dichalcogenides
    (Milton Park : Taylor & Francis, 2008) Inosov, D.S.; Zabolotnyy, V.B.; Evtushinsky, D.V.; Kordyuk, A.A.; Büchner, B.; Follath, R.; Berger, H.; Borisenko, S.V.
    By means of high-resolution angle-resolved photoelectron spectroscopy (ARPES), we have studied the fermiology of 2H transition metal dichalcogenide polytypes TaSe2, NbSe2 and Cu0.2NbS 2. The tight-binding model of the electronic structure, extracted from ARPES spectra for all three compounds, was used to calculate the Lindhard function (bare spin susceptibility), which reflects the propensity to charge density wave (CDW) instabilities observed in TaSe2 and NbSe 2. We show that though the Fermi surfaces of all three compounds possess an incommensurate nesting vector in the close vicinity of the CDW wave vector, the nesting and ordering wave vectors do not exactly coincide, and there is no direct relationship between the magnitude of the susceptibility at the nesting vector and the CDW transition temperature. The nesting vector persists across the incommensurate CDW transition in TaSe2 as a function of temperature despite the observable variations of the Fermi surface geometry in this temperature range. In Cu0.2NbS2, the nesting vector is present despite different doping levels, which leads us to expect a possible enhancement of the CDW instability with Cu intercalation in the Cu xNbS2 family of materials.
  • Item
    Femtosecond time-resolved MeV electron diffraction
    (Milton Park : Taylor & Francis, 2015) Zhu, Pengfei; Zhu, Y.; Hidaka, Y.; Wu, L.; Cao, J.; Berger, H.; Geck, J.; Kraus, R.; Pjerov, S.; Shen, Y.; Tobey, R.I.; Hill, J.P.; Wang, X.J.
    We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS2 are obtained utilizing a 5 fC (~3 × 104 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ~50 nm rad. The transverse and longitudinal coherence length is ~11 and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~100 fs (rms). The temporal resolution is demonstrated by observing the evolution of Bragg and superlattice peaks of 1T-TaS2 following an 800 nm optical pump and was found to be 130 fs. Our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.