Search Results

Now showing 1 - 9 of 9
  • Item
    CRI-HOM: A novel chemical mechanism for simulating highly oxygenated organic molecules (HOMs) in global chemistry-aerosol-climate models
    (Katlenburg-Lindau : EGU, 2020) Weber, James; Archer-Nicholls, Scott; Griffiths, Paul; Berndt, Torsten; Jenkin, Michael; Gordon, Hamish; Knote, Christoph; Archibald, Alexander T.
    We present here results from a new mechanism, CRI-HOM, which we have developed to simulate the formation of highly oxygenated organic molecules (HOMs) from the gas-phase oxidation of-pinene, one of the most widely emitted biogenic volatile organic compounds (BVOCs) by mass. This concise scheme adds 12 species and 66 reactions to the Common Representative Intermediates (CRI) mechanism v2.2 Reduction 5 and enables the representation of semi-explicit HOM treatment suitable for long-term global chemistry-aerosol-climate modelling, within a comprehensive tropospheric chemical mechanism. The key features of the new mechanism are (i) representation of the autoxidation of peroxy radicals from the hydroxyl radical and ozone initiated reactions of-pinene, (ii) formation of multiple generations of peroxy radicals, (iii) formation of accretion products (dimers), and (iv) isoprene-driven suppression of accretion product formation, as observed in experiments. The mechanism has been constructed through optimisation against a series of flow tube laboratory experiments. The mechanism predicts a HOM yield of 2 %-4.5% under conditions of low to moderate NOx , in line with experimental observations, and reproduces qualitatively the decline in HOM yield and concentration at higher NOx levels. The mechanism gives a HOM yield that also increases with temperature, in line with observations, and our mechanism compares favourably to some of the limited observations of [HOM] observed in the boreal forest in Finland and in the southeast USA. The reproduction of isoprene-driven suppression of HOMs is a key step forward as it enables global climate models to capture the interaction between the major BVOC species, along with the potential climatic feedbacks. This suppression is demonstrated when the mechanism is used to simulate atmospheric profiles over the boreal forest and rainforest; different isoprene concentrations result in different [HOM] distributions, illustrating the importance of BVOC interactions in atmospheric composition and climate. Finally particle nucleation rates calculated from [HOM] in present-day and preindustrial atmospheres suggest that "sulfuric-acid-free"nucleation can compete effectively with other nucleation pathways in the boreal forest, particularly in the pre-industrial period, with important implications for the aerosol budget and radiative forcing. © Author(s) 2020.
  • Item
    Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol
    (Washington, DC : ACS Publ., 2019) Bianchi, Federico; Kurtén, Theo; Riva, Matthieu; Mohr, Claudia; Rissanen, Matti P.; Roldin, Pontus; Berndt, Torsten; Crounse, John D.; Wennberg, Paul O.; Mentel, Thomas F.; Wildt, Jürgen; Junninen, Heikki; Jokinen, Tuija; Kulmala, Markku; Worsnop, Douglas R.; Thornton, Joel A.; Donahue, Neil; Kjaergaard, Henrik G.; Ehn, Mikael
    Highly oxygenated organic molecules (HOM) are formed in the atmosphere via autoxidation involving peroxy radicals arising from volatile organic compounds (VOC). HOM condense on pre-existing particles and can be involved in new particle formation. HOM thus contribute to the formation of secondary organic aerosol (SOA), a significant and ubiquitous component of atmospheric aerosol known to affect the Earth's radiation balance. HOM were discovered only very recently, but the interest in these compounds has grown rapidly. In this Review, we define HOM and describe the currently available techniques for their identification/quantification, followed by a summary of the current knowledge on their formation mechanisms and physicochemical properties. A main aim is to provide a common frame for the currently quite fragmented literature on HOM studies. Finally, we highlight the existing gaps in our understanding and suggest directions for future HOM research. © 2019 American Chemical Society.
  • Item
    First oxidation products from the reaction of hydroxyl radicals with isoprene for pristine environmental conditions
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Berndt, Torsten; Hyttinen, Noora; Herrmann, Hartmut; Hansel, Armin
    Isoprene, C5H8, inserts about half of the non-methane carbon flux of biogenic origin into the atmosphere. Its degradation is primarily initiated by the reaction with hydroxyl radicals. Here we show experimentally the formation of reactive intermediates and corresponding closed-shell products from the reaction of hydroxyl radicals with isoprene for low nitric oxide and low hydroperoxy radical conditions. Detailed product analysis is achieved by mass spectrometric techniques. Quantum chemical calculations support the usefulness of applied ionization schemes. Observed peroxy radicals are the isomeric HO-C5H8O2 radicals and their isomerization products HO-C5H8(O2)O2, bearing most likely an additional hydroperoxy group, and in traces HO-C5H8(O2)2O2 with two hydroperoxy groups. Main closed-shell products from unimolecular peroxy radical reactions are hydroperoxy aldehydes, C5H8O3, and smaller yield products with the composition C5H8O4 and C4H8O5. Detected signals of C10H18O4, C10H18O6, and C5H10O2 stand for products arising from peroxy radical self- and cross-reactions. © 2019, The Author(s).
  • Item
    Hydroxyl radical-induced formation of highly oxidized organic compounds
    (London : Nature Publishing Group, 2016) Berndt, Torsten; Richters, Stefanie; Jokinen, Tuija; Hyttinen, Noora; Kurtén, Theo; Otkjær, Rasmus V.; Kjaergaard, Henrik G.; Stratmann, Frank; Herrmann, Hartmut; Sipila, Mikko; Kulmala, Markku; Ehn, Mikael
    Explaining the formation of secondary organic aerosol is an intriguing question in atmospheric sciences because of its importance for Earth’s radiation budget and the associated effects on health and ecosystems. A breakthrough was recently achieved in the understanding of secondary organic aerosol formation from ozone reactions of biogenic emissions by the rapid formation of highly oxidized multifunctional organic compounds via autoxidation. However, the important daytime hydroxyl radical reactions have been considered to be less important in this process. Here we report measurements on the reaction of hydroxyl radicals with a- and b-pinene applying improved mass spectrometric methods. Our laboratory results prove that the formation of highly oxidized products from hydroxyl radical reactions proceeds with considerably higher yields than previously reported. Field measurements support these findings. Our results allow for a better description of the diurnal behaviour of the highly oxidized product formation and subsequent secondary organic aerosol formation in the atmosphere.
  • Item
    Detection of RO2 radicals and other products from cyclohexene ozonolysis with NH4+ and acetate chemical ionization mass spectrometry
    (Oxford [u.a.] : Elsevier, 2018) Hansel, Armin; Scholz, Wiebke; Mentler, Bernhard; Fischer, Lukas; Berndt, Torsten
    The performance of the novel ammonium chemical ionization time of flight mass spectrometer (NH4+-CI3–TOF) utilizing NH4+ adduct ion chemistry to measure first generation oxidized product molecules (OMs) as well as highly oxidized organic molecules (HOMs) was investigated for the first time. The gas-phase ozonolysis of cyclohexene served as a first test system. Experiments have been carried out in the TROPOS free-jet flow system at close to atmospheric conditions. Product ion signals were simultaneously observed by the NH4+-CI3-TOF and the acetate chemical ionization atmospheric pressure interface time of flight mass spectrometer (acetate-CI-API-TOF). Both instruments are in remarkable good agreement within a factor of two for HOMs. For OMs not containing an OOH group the acetate technique can considerably underestimate OM concentrations by 2–3 orders of magnitude. First steps of cyclohexene ozonolysis generate ten different main products, detected with the ammonium-CI3-TOF, comprising 93% of observed OMs. The remaining 7% are distributed over several minor products that can be attributed to HOMs, predominately to highly oxidized RO2 radicals. Summing up, observed ammonium-CI3-TOF products yield 5.6 × 109 molecules cm−³ in excellent agreement with the amount of reacted cyclohexene of 4.5 × 109 molecules cm−³ for reactant concentrations of [O3] = 2.25 × 1012 molecules cm−³ and [cyclohexene] = 2.0 × 1012 molecules cm−³ and a reaction time of 7.9 s. NH4+ adduct ion chemistry is a promising CIMS technology for achieving carbon-closure due to the unique opportunity for complete detection of the whole product distribution including also peroxy radicals, and consequently, for a much better understanding of oxidation processes.
  • Item
    Different pathways of the formation of highly oxidized multifunctional organic compounds (HOMs) from the gas-phase ozonolysis of β-caryophyllene
    (München : European Geopyhsical Union, 2016) Richters, Stefanie; Herrmann, Hartmut; Berndt, Torsten
    The gas-phase mechanism of the formation of highly oxidized multifunctional organic compounds (HOMs) from the ozonolysis of β-caryophyllene was investigated in a free-jet flow system at atmospheric pressure and a temperature of 295 ± 2 K. Reaction products, mainly highly oxidized RO2 radicals containing up to 14 oxygen atoms, were detected using chemical ionization – atmospheric pressure interface – time-of-flight mass spectrometry with nitrate and acetate ionization. These highly oxidized RO2 radicals react with NO, NO2, HO2 and other RO2 radicals under atmospheric conditions forming the first-generation HOM closed-shell products. Mechanistic information on the formation of the highly oxidized RO2 radicals is based on results obtained with isotopically labelled ozone (18O3) in the ozonolysis reaction and from hydrogen/deuterium (H/D) exchange experiments of acidic H atoms in the products. The experimental findings indicate that HOM formation in this reaction system is considerably influenced by the presence of a double bond in the RO2 radicals primarily formed from the β-caryophyllene ozonolysis. Three different reaction types for HOM formation can be proposed, allowing for an explanation of the detected main products: (i) the simple autoxidation, corresponding to the repetitive reaction sequence of intramolecular H-abstraction of a RO2 radical, RO2  →  QOOH, and subsequent O2 addition, next forming a peroxy radical, QOOH + O2  →  R′O2; (ii) an extended autoxidation mechanism additionally involving the internal reaction of a RO2 radical with a double bond forming most likely an endoperoxide and (iii) an extended autoxidation mechanism including CO2 elimination. The individual reaction steps of the reaction types (ii) and (iii) are uncertain at the moment. From the product analysis it can be followed that the simple autoxidation mechanism accounts only for about one-third of the formed HOMs. Time-dependent measurements showed that the HOM formation proceeds at a timescale of 3 s or less under the concentration regime applied here. The new reaction pathways represent an extension of the mechanistic understanding of HOM formation via autoxidation in the atmosphere, as recently discovered from laboratory investigations on monoterpene ozonolysis.
  • Item
    Efficient alkane oxidation under combustion engine and atmospheric conditions
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Wang, Zhandong; Ehn, Mikael; Rissanen, Matti P.; Garmash, Olga; Quéléver, Lauriane; Xing, Lili; Monge-Palacios, Manuel; Rantala, Pekka; Donahue, Neil M.; Berndt, Torsten; Sarathy, S. Mani
    Oxidation chemistry controls both combustion processes and the atmospheric transformation of volatile emissions. In combustion engines, radical species undergo isomerization reactions that allow fast addition of O2. This chain reaction, termed autoxidation, is enabled by high engine temperatures, but has recently been also identified as an important source for highly oxygenated species in the atmosphere, forming organic aerosol. Conventional knowledge suggests that atmospheric autoxidation requires suitable structural features, like double bonds or oxygen-containing moieties, in the precursors. With neither of these functionalities, alkanes, the primary fuel type in combustion engines and an important class of urban trace gases, are thought to have minor susceptibility to extensive autoxidation. Here, utilizing state-of-the-art mass spectrometry, measuring both radicals and oxidation products, we show that alkanes undergo autoxidation much more efficiently than previously thought, both under atmospheric and combustion conditions. Even at high concentrations of NOX, which typically rapidly terminates autoxidation in urban areas, the studied C6–C10 alkanes produce considerable amounts of highly oxygenated products that can contribute to urban organic aerosol. The results of this inter-disciplinary effort provide crucial information on oxidation processes in both combustion engines and the atmosphere, with direct implications for engine efficiency and urban air quality.
  • Item
    Kinetic modeling studies of SOA formation from α-pinene ozonolysis
    (München : European Geopyhsical Union, 2017) Gatzsche, Kathrin; Iinuma, Yoshiteru; Tilgner, Andreas; Mutzel, Anke; Berndt, Torsten; Wolke, Ralf
    This paper describes the implementation of a kinetic gas-particle partitioning approach used for the simulation of secondary organic aerosol (SOA) formation within the SPectral Aerosol Cloud Chemistry Interaction Model (SPACCIM). The kinetic partitioning considers the diffusion of organic compounds into aerosol particles and the subsequent chemical reactions in the particle phase. The basic kinetic partitioning approach is modified by the implementation of chemical backward reaction of the solute within the particle phase as well as a composition-dependent particle-phase bulk diffusion coefficient. The adapted gas-phase chemistry mechanism for α-pinene oxidation has been updated due to the recent findings related to the formation of highly oxidized multifunctional organic compounds (HOMs). Experimental results from a LEAK (Leipziger Aerosolkammer) chamber study for α-pinene ozonolysis were compared with the model results describing this reaction system. The performed model studies reveal that the particle-phase bulk diffusion coefficient and the particle-phase reactivity are key parameters for SOA formation. Using the same particle-phase reactivity for both cases, we find that liquid particles with higher particle-phase bulk diffusion coefficients have 310 times more organic material formed in the particle phase compared to higher viscous semi-solid particles with lower particle-phase bulk diffusion coefficients. The model results demonstrate that, even with a moderate particle-phase reactivity, about 61% of the modeled organic mass consists of reaction products that are formed in the liquid particles. This finding emphasizes the potential role of SOA processing. Moreover, the initial organic aerosol mass concentration and the particle radius are of minor importance for the process of SOA formation in liquid particles. A sensitivity study shows that a 22-fold increase in particle size merely leads to a SOA increase of less than 10%. Due to two additional implementations, allowing backward reactions in the particle phase and considering a composition-dependent particle-phase bulk diffusion coefficient, the potential overprediction of the SOA mass with the basic kinetic approach is reduced by about 40%. HOMs are an important compound group in the early stage of SOA formation because they contribute up to 65% of the total SOA mass at this stage. HOMs also induce further SOA formation by providing an absorptive medium for SVOCs (semi-volatile organic compounds). This process contributes about 27% of the total organic mass. The model results are very similar to the LEAK chamber results. Overall, the sensitivity studies demonstrate that the particle reactivity and the particle-phase bulk diffusion require a better characterization in order to improve the current model implementations and to validate the assumptions made from the chamber simulations. The successful implementation and testing of the current kinetic gas-particle partitioning approach in a box model framework will allow further applications in a 3-D model for regional-scale process investigations.
  • Item
    Multi-generation OH oxidation as a source for highly oxygenated organic molecules from aromatics
    (Katlenburg-Lindau : EGU, 2020) Garmash, Olga; Rissanen, Matti P.; Pullinen, Iida; Schmit, Sebastian; Kausiala, Oskari; Tillmann, Ralf; Zhao, Defeng; Percival, Carl; Bannan, Thomas J.; Priestley, Michael; Hallquist, Åsa M.; Kleist, Einhard; Kiendler-Scharr, Astrid; Hallquist, Mattias; Berndt, Torsten; McFiggans, Gordon; Wildt, Jürgen; Mentel, Thomas F.; Ehn, Mikael
    Recent studies have recognised highly oxygenated organic molecules (HOMs) in the atmosphere as important in the formation of secondary organic aerosol (SOA). A large number of studies have focused on HOM formation from oxidation of biogenically emitted monoterpenes. However, HOM formation from anthropogenic vapours has so far received much less attention. Previous studies have identified the importance of aromatic volatile organic compounds (VOCs) for SOA formation. In this study, we investigated several aromatic compounds, benzene (C6H6), toluene (C7H8), and naphthalene (C10H8), for their potential to form HOMs upon reaction with hydroxyl radicals (OH). We performed flow tube experiments with all three VOCs and focused in detail on benzene HOM formation in the Julich Plant Atmosphere Chamber (JPAC). In JPAC, we also investigated the response of HOMs to NOx and seed aerosol. Using a nitrate-based chemical ionisation mass spectrometer (CI-APi-TOF), we observed the formation of HOMs in the flow reactor oxidation of benzene from the first OH attack. However, in the oxidation of toluene and naphthalene, which were injected at lower concentrations, multigeneration OH oxidation seemed to impact the HOM composition. We tested this in more detail for the benzene system in the JPAC, which allowed for studying longer residence times. The results showed that the apparent molar benzene HOM yield under our experimental conditions varied from 4.1% to 14.0 %, with a strong dependence on the OH concentration, indicating that the majority of observed HOMs formed through multiple OH-oxidation steps. The composition of the identified HOMs in the mass spectrum also supported this hypothesis. By injecting only phenol into the chamber, we found that phenol oxidation cannot be solely responsible for the observed HOMs in benzene experiments. When NOx was added to the chamber, HOM composition changed and many oxygenated nitrogen-containing products were observed in CI-APi-TOF. Upon seed aerosol injection, the HOM loss rate was higher than predicted by irreversible condensation, suggesting that some undetected oxygenated intermediates also condensed onto seed aerosol, which is in line with the hypothesis that some of the HOMs were formed in multi-generation OH oxidation. Based on our results, we conclude that HOM yield and composition in aromatic systems strongly depend on OH and VOC concentration and more studies are needed to fully understand this effect on the formation of HOMs and, consequently, SOA. We also suggest that the dependence of HOM yield on chamber conditions may explain part of the variability in SOA yields reported in the literature and strongly advise monitoring HOMs in future SOA studies. © Author(s) 2020.