Search Results

Now showing 1 - 10 of 13
  • Item
    Taking stock of national climate policies to evaluate implementation of the Paris Agreement
    ([London] : Nature Publishing Group UK, 2020) Roelfsema, Mark; van Soest, Heleen L.; Harmsen, Mathijs; van Vuuren, Detlef P.; Bertram, Christoph; den Elzen, Michel; Höhne, Niklas; Iacobuta, Gabriela; Krey, Volker; Kriegler, Elmar; Luderer, Gunnar; Riahi, Keywan; Ueckerdt, Falko; Després, Jacques; Drouet, Laurent; Emmerling, Johannes; Frank, Stefan; Fricko, Oliver; Gidden, Matthew; Humpenöder, Florian; Huppmann, Daniel; Fujimori, Shinichiro; Fragkiadakis, Kostas; Gi, Keii; Keramidas, Kimon; Köberle, Alexandre C.; Aleluia Reis, Lara; Rochedo, Pedro; Schaeffer, Roberto; Oshiro, Ken; Vrontisi, Zoi; Chen, Wenying; Iyer, Gokul C.; Edmonds, Jae; Kannavou, Maria; Jiang, Kejun; Mathur, Ritu; Safonov, George; Vishwanathan, Saritha Sudharmma
    Many countries have implemented national climate policies to accomplish pledged Nationally Determined Contributions and to contribute to the temperature objectives of the Paris Agreement on climate change. In 2023, the global stocktake will assess the combined effort of countries. Here, based on a public policy database and a multi-model scenario analysis, we show that implementation of current policies leaves a median emission gap of 22.4 to 28.2 GtCO2eq by 2030 with the optimal pathways to implement the well below 2 °C and 1.5 °C Paris goals. If Nationally Determined Contributions would be fully implemented, this gap would be reduced by a third. Interestingly, the countries evaluated were found to not achieve their pledged contributions with implemented policies (implementation gap), or to have an ambition gap with optimal pathways towards well below 2 °C. This shows that all countries would need to accelerate the implementation of policies for renewable technologies, while efficiency improvements are especially important in emerging countries and fossil-fuel-dependent countries.
  • Item
    Enhancing global climate policy ambition towards a 1.5 °c stabilization: A short-term multi-model assessment
    (Bristol : IOP Publishing, 2018) Vrontisi, Zoi; Luderer, Gunnar; Saveyn, Bert; Keramidas, Kimon; Lara, Aleluia Reis; Baumstark, Lavinia; Bertram, Christoph; de Boer, Harmen Sytze; Drouet, Laurent; Fragkiadakis, Kostas; Fricko, Oliver; Fujimori, Shinichiro; Guivarch, Celine; Kitous, Alban; Krey, Volker; Kriegler, Elmar; Broin, Eoin Ó.; Paroussos, Leonidas; van Vuuren, Detlef
    The Paris Agreement is a milestone in international climate policy as it establishes a global mitigation framework towards 2030 and sets the ground for a potential 1.5 °C climate stabilization. To provide useful insights for the 2018 UNFCCC Talanoa facilitative dialogue, we use eight state-of-the-art climate-energy-economy models to assess the effectiveness of the Intended Nationally Determined Contributions (INDCs) in meeting high probability 1.5 and 2 °C stabilization goals. We estimate that the implementation of conditional INDCs in 2030 leaves an emissions gap from least cost 2 °C and 1.5 °C pathways for year 2030 equal to 15.6 (9.0–20.3) and 24.6 (18.5–29.0) GtCO2eq respectively. The immediate transition to a more efficient and low-carbon energy system is key to achieving the Paris goals. The decarbonization of the power supply sector delivers half of total CO2 emission reductions in all scenarios, primarily through high penetration of renewables and energy efficiency improvements. In combination with an increased electrification of final energy demand, low-carbon power supply is the main short-term abatement option. We find that the global macroeconomic cost of mitigation efforts does not reduce the 2020–2030 annual GDP growth rates in any model more than 0.1 percentage points in the INDC or 0.3 and 0.5 in the 2 °C and 1.5 °C scenarios respectively even without accounting for potential co-benefits and avoided climate damages. Accordingly, the median GDP reductions across all models in 2030 are 0.4%, 1.2% and 3.3% of reference GDP for each respective scenario. Costs go up with increasing mitigation efforts but a fragmented action, as implied by the INDCs, results in higher costs per unit of abated emissions. On a regional level, the cost distribution is different across scenarios while fossil fuel exporters see the highest GDP reductions in all INDC, 2 °C and 1.5 °C scenarios.
  • Item
    Targeted policies can compensate most of the increased sustainability risks in 1.5 °C mitigation scenarios
    (Bristol : IOP Publ., 2018) Bertram, Christoph; Luderer, Gunnar; Popp, Alexander; Minx, Jan Christoph; Lamb, William F; Stevanović, Miodrag; Humpenöder, Florian; Giannousakis, Anastasis; Kriegler, Elmar
    Meeting the 1.5 °C goal will require a rapid scale-up of zero-carbon energy supply, fuel switching to electricity, efficiency and demand-reduction in all sectors, and the replenishment of natural carbon sinks. These transformations will have immediate impacts on various of the sustainable development goals. As goals such as affordable and clean energy and zero hunger are more immediate to great parts of global population, these impacts are central for societal acceptability of climate policies. Yet, little is known about how the achievement of other social and environmental sustainability objectives can be directly managed through emission reduction policies. In addition, the integrated assessment literature has so far emphasized a single, global (cost-minimizing) carbon price as the optimal mechanism to achieve emissions reductions. In this paper we introduce a broader suite of policies—including direct sector-level regulation, early mitigation action, and lifestyle changes—into the integrated energy-economy-land-use modeling system REMIND-MAgPIE. We examine their impact on non-climate sustainability issues when mean warming is to be kept well below 2 °C or 1.5 °C. We find that a combination of these policies can alleviate air pollution, water extraction, uranium extraction, food and energy price hikes, and dependence on negative emissions technologies, thus resulting in substantially reduced sustainability risks associated with mitigating climate change. Importantly, we find that these targeted policies can more than compensate for most sustainability risks of increasing climate ambition from 2 °C to 1.5 °C.
  • Item
    Energy system developments and investments in the decisive decade for the Paris Agreement goals
    (Bristol : IOP Publ., 2021-6-29) Bertram, Christoph; Riahi, Keywan; Hilaire, Jérôme; Bosetti, Valentina; Drouet, Laurent; Fricko, Oliver; Malik, Aman; Pupo Nogueira, Larissa; van der Zwaan, Bob; van Ruijven, Bas; van Vuuren, Detlef; Weitzel, Matthias; Dalla Longa, Francesco; de Boer, Harmen-Sytze; Emmerling, Johannes; Fosse, Florian; Fragkiadakis, Kostas; Harmsen, Mathijs; Keramidas, Kimon; Kishimoto, Paul Natsuo; Kriegler, Elmar; Krey, Volker; Paroussos, Leonidas; Saygin, Deger; Vrontisi, Zoi; Luderer, Gunnar
    The Paris Agreement does not only stipulate to limit the global average temperature increase to well below 2 °C, it also calls for 'making finance flows consistent with a pathway towards low greenhouse gas emissions'. Consequently, there is an urgent need to understand the implications of climate targets for energy systems and quantify the associated investment requirements in the coming decade. A meaningful analysis must however consider the near-term mitigation requirements to avoid the overshoot of a temperature goal. It must also include the recently observed fast technological progress in key mitigation options. Here, we use a new and unique scenario ensemble that limit peak warming by construction and that stems from seven up-to-date integrated assessment models. This allows us to study the near-term implications of different limits to peak temperature increase under a consistent and up-to-date set of assumptions. We find that ambitious immediate action allows for limiting median warming outcomes to well below 2 °C in all models. By contrast, current nationally determined contributions for 2030 would add around 0.2 °C of peak warming, leading to an unavoidable transgression of 1.5 °C in all models, and 2 °C in some. In contrast to the incremental changes as foreseen by current plans, ambitious peak warming targets require decisive emission cuts until 2030, with the most substantial contribution to decarbonization coming from the power sector. Therefore, investments into low-carbon power generation need to increase beyond current levels to meet the Paris goals, especially for solar and wind technologies and related system enhancements for electricity transmission, distribution and storage. Estimates on absolute investment levels, up-scaling of other low-carbon power generation technologies and investment shares in less ambitious scenarios vary considerably across models. In scenarios limiting peak warming to below 2 °C, while coal is phased out quickly, oil and gas are still being used significantly until 2030, albeit at lower than current levels. This requires continued investments into existing oil and gas infrastructure, but investments into new fields in such scenarios might not be needed. The results show that credible and effective policy action is essential for ensuring efficient allocation of investments aligned with medium-term climate targets.
  • Item
    Early transformation of the Chinese power sector to avoid additional coal lock-in
    (Bristol : IOP Publ., 2020) Wang, Huan; Chen, Wenying; Bertram, Christoph; Malik, Aman; Kriegler, Elmar; Luderer, Gunnar; Després, Jacques; Jiang, Kejun; Krey, Volker
    Emission reduction from the coal-dominated power sector is vital for achieving China's carbon mitigation targets. Although the coal expansion has been slowed down due to the cancellation of and delay in new construction, coal-based power was responsible for over one third of China's energy-related CO2 emissions by 2018. Moreover, with a technical lifetime of over 30 years, current investment in coal-based power could hinder CO2 mitigation until 2050. Therefore, it is important to examine whether the current coal-based power planning aligns with the long-term climate targets. This paper introduces China's Nationally Determined Contribution (NDC) goals and an ambitious carbon budget along with global pathways well-below 2 degrees that are divided into five integrated assessment models, which are two national and three global models. We compare the models' results with bottom-up data on current capacity additions and expansion plans to examine if the NDC targets are in line with 2-degree pathways. The key findings are: 1. NDC goals alone are unlikely to lead to significant reductions in coal-based power generation. On the contrary, more plants may be built before 2030; 2. this would require an average of 187–261 TWh of annual coal-based power capacity reduction between 2030 and 2050 to achieve a 2 °C compatible trajectory, which would lead to the stranding of large-scale coal-based power plants; 3. if the reduction in coal power can be brought forward to 2020, the average annual coal-based power reduction required would be 104–155 TWh from 2020 to 2050 and the emissions could peak earlier; 4. early regulations in coal-based power would require accelerated promotion of alternatives between 2020 and 2030, with nuclear, wind and solar power expected to be the most promising alternatives. By presenting the stranding risk and viability of alternatives, we suggest that both the government and enterprises should remain cautious about making new investment in coal-based power sector.
  • Item
    Economic mitigation challenges: How further delay closes the door for achieving climate targets
    (Bristol : IOP Publishing, 2013) Luderer, Gunnar; Pietzcker, Robert C.; Bertram, Christoph; Kriegler, Elmar; Meinshausen, Malte; Edenhofer, Ottmar
    While the international community aims to limit global warming to below 2 ° C to prevent dangerous climate change, little progress has been made towards a global climate agreement to implement the emissions reductions required to reach this target. We use an integrated energy–economy–climate modeling system to examine how a further delay of cooperative action and technology availability affect climate mitigation challenges. With comprehensive emissions reductions starting after 2015 and full technology availability we estimate that maximum 21st century warming may still be limited below 2 ° C with a likely probability and at moderate economic impacts. Achievable temperature targets rise by up to ~0.4 ° C if the implementation of comprehensive climate policies is delayed by another 15 years, chiefly because of transitional economic impacts. If carbon capture and storage (CCS) is unavailable, the lower limit of achievable targets rises by up to ~0.3 ° C. Our results show that progress in international climate negotiations within this decade is imperative to keep the 2 ° C target within reach.
  • Item
    Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century
    (Amsterdam : Elsevier, 2016) Kriegler, Elmar; Bauer, Nico; Popp, Alexander; Humpenöder, Florian; Leimbach, Marian; Strefler, Jessica; Baumstark, Lavinia; Bodirsky, Benjamin Leon; Hilaire, Jérôme; Klein, David; Mouratiadou, Ioanna; Weindl, Isabelle; Bertram, Christoph; Dietrich, Jan-Philipp; Luderer, Gunnar; Pehl, Michaja; Pietzcker, Robert; Piontek, Franziska; Lotze-Campen, Hermann; Biewald, Anne; Bonsch, Markus; Giannousakis, Anastasis; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Schultes, Anselm; Schwanitz, Jana; Stevanovic, Miodrag; Calvin, Katherine; Emmerling, Johannes; Fujimori, Shinichiro; Edenhofer, Ottmar
    This paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 baseline scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, marking the upper end of the scenario literature in several dimensions. These scenarios are currently the only SSP scenarios that result in a radiative forcing pathway as high as the highest Representative Concentration Pathway (RCP8.5). This paper further investigates the direct impact of mitigation policies on the SSP5 energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. The SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.
  • Item
    Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models
    (Amsterdam [u.a.] : Elsevier Science, 2018) Krey, Volker; Guo, Fei; Kolp, Peter; Zhou, Wenji; Schaeffer, Roberto; Awasthy, Aayushi; Bertram, Christoph; de Boer, Harmen-Sytze; Fragkos, Panagiotis; Fujimori, Shinichiro; He, Chenmin; Iyer, Gokul; Keramidas, Kimon; Köberle, Alexandre C.; Oshiro, Ken; Reis, Lara Aleluia; Shoai-Tehrani, Bianka; Vishwanathan, Saritha; Capros, Pantelis; Drouet, Laurent; Edmonds, James E.; Garg, Amit; Gernaat, David E.H.J.; Jiang, Kejun; Kannavou, Maria; Kitous, Alban; Kriegler, Elmar; Luderer, Gunnar; Mathur, Ritu; Muratori, Matteo; Sano, Fuminori; van Vuuren, Detlef P.
    Integrated assessment models are extensively used in the analysis of climate change mitigation and are informing national decision makers as well as contribute to international scientific assessments. This paper conducts a comprehensive review of techno-economic assumptions in the electricity sector among fifteen different global and national integrated assessment models. Particular focus is given to six major economies in the world: Brazil, China, the EU, India, Japan and the US. The comparison reveals that techno-economic characteristics are quite different across integrated assessment models, both for the base year and future years. It is, however, important to recognize that techno-economic assessments from the literature exhibit an equally large range of parameters as the integrated assessment models reviewed. Beyond numerical differences, the representation of technologies also differs among models, which needs to be taken into account when comparing numerical parameters. While desirable, it seems difficult to fully harmonize techno-economic parameters across a broader range of models due to structural differences in the representation of technology. Therefore, making techno-economic parameters available in the future, together with of the technology representation as well as the exact definitions of the parameters should become the standard approach as it allows an open discussion of appropriate assumptions. © 2019 The Authors
  • Item
    REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits
    (Katlenburg-Lindau : Copernicus, 2021) Baumstark, Lavinia; Bauer, Nico; Benke, Falk; Bertram, Christoph; Bi, Stephen; Gong, Chen Chris; Dietrich, Jan Philipp; Dirnaichner, Alois; Giannousakis, Anastasis; Hilaire, Jerome; Klein, David; Koch, Johannes; Leimbach, Marian; Levesque, Antoine; Madeddu, Silvia; Malik, Aman; Merfort, Anne; Merfort, Leon; Odenweller, Adrian; Pehl, Michaja; Pietzcker, Robert C.; Piontek, Franziska; Rauner, Sebastian; Rodrigues, Renato; Rottoli, Marianna; Schreyer, Felix; Schultes, Anselm; Soergel, Bjoern; Soergel, Dominika; Strefler, Jessica; Ueckerdt, Falko; Kriegler, Elmar; Luderer, Gunnar
    This paper presents the new and now open-source version 2.1 of the REgional Model of INvestments and Development (REMIND). REMIND, as an integrated assessment model (IAM), provides an integrated view of the global energy–economy–emissions system and explores self-consistent transformation pathways. It describes a broad range of possible futures and their relation to technical and socio-economic developments as well as policy choices. REMIND is a multiregional model incorporating the economy and a detailed representation of the energy sector implemented in the General Algebraic Modeling System (GAMS). It uses non-linear optimization to derive welfare-optimal regional transformation pathways of the energy-economic system subject to climate and sustainability constraints for the time horizon from 2005 to 2100. The resulting solution corresponds to the decentralized market outcome under the assumptions of perfect foresight of agents and internalization of external effects. REMIND enables the analyses of technology options and policy approaches for climate change mitigation with particular strength in representing the scale-up of new technologies, including renewables and their integration in power markets. The REMIND code is organized into modules that gather code relevant for specific topics. Interaction between different modules is made explicit via clearly defined sets of input and output variables. Each module can be represented by different realizations, enabling flexible configuration and extension. The spatial resolution of REMIND is flexible and depends on the resolution of the input data. Thus, the framework can be used for a variety of applications in a customized form, balancing requirements for detail and overall runtime and complexity.
  • Item
    Short term policies to keep the door open for Paris climate goals
    (Bristol : IOP Publ., 2018) Kriegler, Elmar; Bertram, Christoph; Kuramochi, Takeshi; Jakob, Michael; Pehl, Michaja; Stevanović, Miodrag; Höhne, Niklas; Luderer, Gunnar; Minx, Jan C; Fekete, Hanna; Hilaire, Jérôme; Luna, Lisa; Popp, Alexander; Steckel, Jan Christoph; Sterl, Sebastian; Yalew, Amsalu Woldie; Dietrich, Jan Philipp; Edenhofer, Ottmar
    Climate policy needs to account for political and social acceptance. Current national climate policy plans proposed under the Paris Agreement lead to higher emissions until 2030 than cost-effective pathways towards the Agreements' long-term temperature goals would imply. Therefore, the current plans would require highly disruptive changes, prohibitive transition speeds, and large long-term deployment of risky mitigation measures for achieving the agreement's temperature goals after 2030. Since the prospects of introducing the cost-effective policy instrument, a global comprehensive carbon price in the near-term, are negligible, we study how a strengthening of existing plans by a global roll-out of regional policies can ease the implementation challenge of reaching the Paris temperature goals. The regional policies comprise a bundle of regulatory policies in energy supply, transport, buildings, industry, and land use and moderate, regionally differentiated carbon pricing. We find that a global roll-out of these policies could reduce global CO2 emissions by an additional 10 GtCO2eq in 2030 compared to current plans. It would lead to emissions pathways close to the levels of cost-effective likely below 2 °C scenarios until 2030, thereby reducing implementation challenges post 2030. Even though a gradual phase-in of a portfolio of regulatory policies might be less disruptive than immediate cost-effective carbon pricing, it would perform worse in other dimensions. In particular, it leads to higher economic impacts that could become major obstacles in the long-term. Hence, such policy packages should not be viewed as alternatives to carbon pricing, but rather as complements that provide entry points to achieve the Paris climate goals.