Search Results

Now showing 1 - 2 of 2
  • Item
    Bibliometric Analysis of Soil and Landscape Stability, Sensitivity and Resistivity
    (Basel : MDPI, 2022) Bettoni, Manuele; Maerker, Michael; Bosino, Alberto; Schillaci, Calogero; Vogel, Sebastian
    In times of global change, it is of fundamental importance to understand the sensitivity, stability and resistivity of a landscape or ecosystem to human disturbance. Landscapes and ecosystems have internal thresholds, giving them the ability to resist such disturbance. When these thresholds are quantified, the development of countermeasures can help prevent irreversible changes and support adaptations to the negative effects of global change. The main objective of this analysis is to address the lack of recent studies defining terms like sensitivity, resistivity and stability in reference to landscapes and ecosystems through a Bibliometric analysis based on Scopus and Web of Science peer-reviewed articles. The present research also aims to quantify landscape statuses in terms of their sensitivity, stability and resistivity. The term “landscape stability” is mainly related to quantitatively measurable properties indicating a certain degree of stability. In contrast, the term “landscape sensitivity” is often related to resilience; however, this definition has not substantially changed over time. Even though a large number of quantification methods related to soil and landscape stability and sensitivity were found, these methods are rather ad hoc. This study stresses the importance of interdisciplinary studies and work groups.
  • Item
    What makes soil landscape robust? Landscape sensitivity towards land use changes in a Swiss southern Alpine valley
    (Amsterdam [u.a.] : Elsevier Science, 2022) Bettoni, Manuele; Maerker, Michael; Sacchi, Roberto; Bosino, Alberto; Conedera, Marco; Simoncelli, Laura; Vogel, Sebastian
    Landscape sensitivity is a concept referring to the likelihood that changes in land use may affect in an irreversible way physical and chemical soil properties of the concerned landscape. The objective of this study is to quantitatively assess the sensitivity of the southern Alpine soil landscape regarding land use change-induced perturbations. Alpine soil landscapes can be considered as particularly sensitive to land use changes because their effects tend to be enhanced by frequent extreme climatic and topographic conditions as well as intense geomorphologic activity. In detail, the following soil key properties for soil vulnerability were analysed: (i) soil texture, (ii) bulk density, (iii) soil organic carbon (SOC), (iv) saturated hydraulic conductivity (Ksat), (v) aggregate stability and (vi) soil water repellency (SWR). The study area is characterized by a steep, east-west oriented valley, strongly anthropized in the last centuries followed by a progressive abandonment. This area is particularly suitable due to constant lithological conditions, extreme topographic and climatic conditions as well as historic land use changes. The analysis of land use change effects on soil properties were performed through a linear mixed model approach due to the nested structure of the data. Our results show a generally high stability of the assessed soils in terms of aggregate stability and noteworthy thick soils. The former is remarkable, since aggregate stability, which is commonly used for detecting land use-induced changes in soil erosion susceptibility, was always comparably high irrespective of land use. The stability of the soils is mainly related to a high amount of soil organic matter favouring the formation of stable soil aggregates, decreasing soil erodibility and hence, reducing soil loss by erosion. However, the most sensitive soil property to land use change was SWR that is partly influenced by the amount of soil organic carbon and probably by the quality and composition of SOM.