Search Results

Now showing 1 - 1 of 1
  • Item
    Aerosol optical properties in the southeastern United States in summer - Part 1: Hygroscopic growth
    (Katlenburg-Lindau : EGU, 2016) Brock, Charles A.; Wagner, Nicholas L.; Anderson, Bruce E.; Attwood, Alexis R.; Beyersdorf, Andreas; Campuzano-Jost, Pedro; Carlton, Annmarie G.; Day, Douglas A.; Diskin, Glenn S.; Gordon, Timothy D.; Jimenez, Jose L.; Lack, Daniel A.; Liao, Jin; Markovic, Milos Z.; Middlebrook, Ann M.; Ng, Nga L.; Perring, Anne E.; Richardson, Matthews S.; Schwarz, Joshua P.; Washenfelder, Rebecca A.; Welti, Andre; Xu, Lu; Ziemba, Luke D.; Murphy, Daniel M.
    Aircraft observations of meteorological, trace gas, and aerosol properties were made during May–September 2013 in the southeastern United States (US) under fair-weather, afternoon conditions with well-defined planetary boundary layer structure. Optical extinction at 532 nm was directly measured at relative humidities (RHs) of  ∼  15,  ∼  70, and  ∼  90 % and compared with extinction calculated from measurements of aerosol composition and size distribution using the κ-Köhler approximation for hygroscopic growth. The calculated enhancement in hydrated aerosol extinction with relative humidity, f(RH), calculated by this method agreed well with the observed f(RH) at  ∼  90 % RH. The dominance of organic aerosol, which comprised 65 ± 10 % of particulate matter with aerodynamic diameter  <  1 µm in the planetary boundary layer, resulted in relatively low f(RH) values of 1.43 ± 0.67 at 70 % RH and 2.28 ± 1.05 at 90 % RH. The subsaturated κ-Köhler hygroscopicity parameter κ for the organic fraction of the aerosol must have been  <  0.10 to be consistent with 75 % of the observations within uncertainties, with a best estimate of κ  =  0.05. This subsaturated κ value for the organic aerosol in the southeastern US is broadly consistent with field studies in rural environments. A new, physically based, single-parameter representation was developed that better described f(RH) than did the widely used gamma power-law approximation.