Search Results

Now showing 1 - 2 of 2
  • Item
    Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals
    (Melville, NY : AIP Publ., 2019) Galazka, Zbigniew; Ganschow, Steffen; Schewski, Robert; Irmscher, Klaus; Klimm, Detlef; Kwasniewski, Albert; Pietsch, Mike; Fiedler, Andreas; Schulze-Jonack, Isabelle; Albrecht, Martin; Schröder, Thomas; Bickermann, Matthias
    Truly bulk ZnGa2O4 single crystals were obtained directly from the melt. High melting point of 1900 ± 20 °C and highly incongruent evaporation of the Zn- and Ga-containing species impose restrictions on growth conditions. The obtained crystals are characterized by a stoichiometric or near-stoichiometric composition with a normal spinel structure at room temperature and by a narrow full width at half maximum of the rocking curve of the 400 peak of (100)-oriented samples of 23 arcsec. ZnGa2O4 is a single crystalline spinel phase with the Ga/Zn atomic ratio up to about 2.17. Melt-grown ZnGa2O4 single crystals are thermally stable up to 1100 and 700 °C when subjected to annealing for 10 h in oxidizing and reducing atmospheres, respectively. The obtained ZnGa2O4 single crystals were either electrical insulators or n-type semiconductors/degenerate semiconductors depending on growth conditions and starting material composition. The as-grown semiconducting crystals had the resistivity, free electron concentration, and maximum Hall mobility of 0.002–0.1 Ωcm, 3 × 1018–9 × 1019 cm−3, and 107 cm2 V−1 s−1, respectively. The semiconducting crystals could be switched into the electrically insulating state by annealing in the presence of oxygen at temperatures ≥700 °C for at least several hours. The optical absorption edge is steep and originates at 275 nm, followed by full transparency in the visible and near infrared spectral regions. The optical bandgap gathered from the absorption coefficient is direct with a value of about 4.6 eV, close to that of β-Ga2O3. Additionally, with a lattice constant of a = 8.3336 Å, ZnGa2O4 may serve as a good lattice-matched substrate for magnetic Fe-based spinel films.
  • Item
    Bulk single crystals and physical properties of β-(AlxGa1-x)2O3(x = 0-0.35) grown by the Czochralski method
    (Melville, NY : American Inst. of Physics, 2023) Galazka, Zbigniew; Fiedler, Andreas; Popp, Andreas; Ganschow, Steffen; Kwasniewski, Albert; Seyidov, Palvan; Pietsch, Mike; Dittmar, Andrea; Anooz, Saud Bin; Irmscher, Klaus; Suendermann, Manuela; Klimm, Detlef; Chou, Ta-Shun; Rehm, Jana; Schroeder, Thomas; Bickermann, Matthias
    We have systematically studied the growth, by the Czochralski method, and basic physical properties of a 2 cm and 2 in. diameter bulk β-(AlxGa1-x)2O3 single crystal with [Al] = 0-35 mol. % in the melt in 5 mol. % steps. The segregation coefficient of Al in the Ga2O3 melt of 1.1-1.2 results in a higher Al content in the crystals than in the melt. The crystals were also co-doped with Si or Mg. [Al] = 30 mol. % in the melt (33-36 mol. % in the crystals) seems to be a limit for obtaining bulk single crystals of high structural quality suitable for homoepitaxy. The crystals were either semiconducting (no intentional co-dopants with [Al] = 0-30 mol. % and Si-doped with [Al] = 15-20 mol. %), degenerately semiconducting (Si-doped with [Al] ≤ 15 mol. %), or semi-insulating ([Al] ≥ 25 mol. % and/or Mg-doped). The full width at half maximum of the rocking curve was 30-50 arcsec. The crystals showed a linear but anisotropic decrease in all lattice constants and a linear increase in the optical bandgap (5.6 eV for [Al] = 30 mol. %). The room temperature electron mobility at similar free electron concentrations gradually decreases with [Al], presumably due to enhanced scattering at phonons as the result of a larger lattice distortion. In Si co-doped crystals, the scattering is enhanced by ionized impurities. Measured electron mobilities and bandgaps enabled to estimate the Baliga figure of merit for electronic devices.