Search Results

Now showing 1 - 1 of 1
  • Item
    Valence-band density of states and surface electron accumulation in epitaxial SnO2 films
    (College Park : American Physical Society, 2014) Vasheghani Farahani, S.K.; Veal, T.D.; Mudd, J.J.; Scanlon, D.O.; Watson, G.W.; Bierwagen, O.; White, M.E.; Speck, J.S.; McConville, C.F.
    The surface band bending and electronic properties of SnO2(101) films grown on r-sapphire by plasma-assisted molecular beam epitaxy have been studied by Fourier-transform infrared spectroscopy (FTIR), x-ray photoemission spectroscopy (XPS), Hall effect, and electrochemical capacitance-voltage measurements. The XPS results were correlated with density functional theory calculation of the partial density of states in the valence-band and semicore levels. Good agreement was found between theory and experiment with a small offset of the Sn 4d levels. Homogeneous Sb-doped SnO2 films allowed for the calculation of the bulk Fermi level with respect to the conduction-band minimum within the k⋅p carrier statistics model. The band bending and carrier concentration as a function of depth were obtained from the capacitance-voltage characteristics and model space charge calculations of the Mott-Schottky plots at the surface of Sb-doped SnO2 films. It was quantitatively demonstrated that SnO2 films have downward band bending and surface electron accumulation. The surface band bending, unoccupied donor surface-state density, and width of the accumulation region all decrease with increasing Sb concentration.