Search Results

Now showing 1 - 2 of 2
  • Item
    Oxygen-deficient oxide growth by subliming the oxide source material: The cause of silicide formation in rare earth oxides on silicon
    (Washington, DC : ACS, 2013) Bierwagen, O.; Proessdorf, A.; Niehle, M.; Grosse, F.; Trampert, A.; Klingsporn, M.
    The fundamental issue of oxygen stoichiometry in oxide thin film growth by subliming the source oxide is investigated by varying the additionally supplied oxygen during molecular beam epitaxy of RE2O3 (RE = Gd, La, Lu) thin films on Si(111). Supplying additional oxygen throughout the entire growth was found to prevent the formation of rare earth silicides observed in films grown without an oxygen source. Postgrowth vacuum annealing of oxygen stoichiometric films did not lead to silicide formation thereby confirming that the silicides do not form as a result of an interface instability at growth temperature in vacuum but rather due to an oxygen deficiency in the source vapor. The average oxygen deficiency of the rare-earth containing species in the source vapor was quantified by the 18O tracer technique and correlated with that of the source material, which gradually decomposed during sublimation. Therefore, any oxide growth by sublimation of the oxide source material requires additional oxygen to realize oxygen stoichiometric films.
  • Item
    Substrate-orientation dependence of β -Ga2O3 (100), (010), (001), and (2 ̄ 01) homoepitaxy by indium-mediated metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE)
    (Melville, NY : AIP Publ., 2020) Mazzolini, P.; Falkenstein, A.; Wouters, C.; Schewski, R.; Markurt, T.; Galazka, Z.; Martin, M.; Albrecht, M.; Bierwagen, O.
    We experimentally demonstrate how In-mediated metal-exchange catalysis (MEXCAT) allows us to widen the deposition window for β-Ga2O3 homoepitaxy to conditions otherwise prohibitive for its growth via molecular beam epitaxy (e.g., substrate temperatures ≥800 °C) on the major substrate orientations, i.e., (010), (001), (2⎯⎯01), and (100) 6°-offcut. The obtained crystalline qualities, surface roughnesses, growth rates, and In-incorporation profiles are shown and compared with different experimental techniques. The growth rates, Γ, for fixed growth conditions are monotonously increasing with the surface free energy of the different orientations with the following order: Γ(010) > Γ(001) > Γ(2⎯⎯01) > Γ(100). Ga2O3 surfaces with higher surface free energy provide stronger bonds to the surface ad-atoms or ad-molecules, resulting in decreasing desorption, i.e., a higher incorporation/growth rate. The structural quality in the case of (2⎯⎯01), however, is compromised by twin domains due to the crystallography of this orientation. Notably, our study highlights β-Ga2O3 layers with high structural quality grown by MEXCAT-MBE not only in the most investigated (010) orientation but also in the (100) and (001) ones. In particular, MEXCAT on the (001) orientation results in both growth rate and structural quality comparable to the ones achievable with (010), and the limited incorporation of In associated with the MEXCAT deposition process does not change the insulating characteristics of unintentionally doped layers. The (001) surface is therefore suggested as a valuable alternative orientation for devices.